WORKING NOTES ON CURRENT-METER DEPLOYMENT, RECOVERY

MAINTENANCE, AND DATA PROCESSING FOR SAN FRANCISCO BAY

by Ralph T. Cheng and Jeffrey W. Gartner

U.S. Geological Survey

Open-File Report #80-1297

Prepared as part of a continuing
San Francisco Bay estuarine study

UNITED STATES DEPARTMENT OF THE INTERIOR

CECIL D. ANDRUS, Secretary

GEOLOGICAL SURVEY

H. William Menard, Director

OPEN-FILE REPORT

For additional information write to:

Regional Hydrologist Water Resources Division U.S.Geological Survey 345 Middlefield Road Menlo Park, CA 94025

CONTENTS

	Page
Abstract	1
Introduction	2
Field work	3
Instrument description	7
Parameter accuracy	9
Hardware reliability	13
Data processing	17
Discussion	27
References	28
Appendix A: Endeco meter predeployment check list	30
Appendix B: Endeco meter postdeployment check list	33
Appendix C: Data processing computer programs	35
TII UCMD A MIONC	
ILLUSTRATIONS	
Figure 1. Schematic diagram of a typical current-meter array	4
 A microcomputer based current-meter data-acquisition system 	n 18
 Typical speed and direction data for entire deployment 	21
 Typical speed and direction data for 1 week of deployment 	22
 Typical temperature and salinity data for 1 week of deployment 	23
Progressive vector diagram utilizing 1 week of data	24
7. Tidal ellipse utilizing 1 week of data	25
8. Histogram for speed and direction utilizing data from entire deployment	26

WORKING NOTES ON CURRENT-METER DEPLOYMENT, RECOVERY,
MAINTENANCE, AND DATA PROCESSING FOR SAN FRANCISCO BAY

By Ralph T. Cheng and Jeffrey W. Gartner

ABSTRACT

A current-metering program has been initiated by the U.S. Geological Survey as a part of an interdisciplinary study to collect basic hydrodynamic data for the San Francisco Bay estuarine system. The current meters employed for the study record current speed and direction, water temperature, and conductivity at a preselected time interval on endless-loop magnetic tape. This report documents operational procedures, maintenance, and computer programs for data reduction for these current meters.

INTRODUCTION

The complex interactive processes which affect an estuary such as San Francisco Bay, California, include tides, freshwater input, wind, and mixing. To enhance understanding of the hydrodynamic and ecological processes at work in the Bay, mathematical hydrodynamic models have been developed (Conomos and others, 1978; Walters and Cheng, 1979; and Cheng and Walters, 1978). Basic hydrodynamic data are needed to describe estuarine hydrodynamic processes and to support mathematical modeling research. At present there are no long-term (monthly) records of current data available for San Francisco Bay. To fill this gap and to complement other hydrographical, biological, and chemical data-collection programs, a research program to collect current-meter data of San Francisco Bay has been established.

Factors that must be considered in establishing such a data-collection program include the selection of suitable hardware and the preparation, maintenance, and repair of these instruments, as well as the deployment and recovery procedures used in the field. Other important and often underestimated efforts are the development of data-reduction procedures and software. This report addresses these considerations. It also documents our experience while working with these instruments to enable better understanding and interpretation of current-meter data to be presented in future reports.

FIELD WORK

The initial phase of the field work consisted of selecting the current meter best suited to the intended program. Primary considerations in making the selection were ease of handling, accuracy of measurement over an extended period of 30 to 60 days, and availability of efficient data-reduction procedures. Of the several meters examined the ENDECO- $174\frac{1}{}$ most closely met the needs of the Bay studies (Cheng, 1978).

The typical current-meter mooring employed by the U.S. Geological Survey is a subsurface taut-wire mooring (see Fig. 1), which consists of floats with sufficient buoyancy to suspend the weight of equipment and mooring cable, the current meter(s), an acoustic release, and a suitable anchor (normally 90-115 kg). All of these components are shackled in series by 0.6-cm stainless steel cable. Length of the mooring cable is determined by water depth and is so chosen that the top of the subsurface float is a minimum of 3 m below the surface of the mean lower low water (MLLW). Current-meter arrays are normally deployed from the R/V Polaris, the Geological Survey's 97-foot research vessel which is equipped with power winches, capstans, booms and davits to facilitate deployment and recovery of equipment. Prior to deployment, the current meters are serviced in the laboratory following the predeployment check list (see Appendix A). Immediately before deployment components of the assembly are shackled together and placed on deck. deployment sequence is an anchor-in-last procedure. The entire

Mention of a commercial company or product in this report does not constitute an endorsement by the authors or the U.S. Geological Survey.

FIGURE 1. Schematic diagram of a typical current meter array.

assembly, with the exception of the anchor, is lowered into the water and held away from the anchor. The anchor weight, which is attached to a winch through a quick-release mechanism, is then lifted up, swung free of the ship, and suspended above water. While the array is held away from the anchor weight, the mooring assembly is slowly lowered to the bottom. The winch cable is detached by triggering the quick release, thus completing the deployment. The position of the array is determined by use of a sextant fix or radar ranges and bearings from known points.

The deployment periods are normally scheduled to cover a minimum of 30 days because currents in the Bay are primarily driven by the tides, which include semidiurnal, diurnal, fortnightly, monthly, and annual variations. Where water depth permits, three meters have been used in an array to give a more complete picture of the velocity profile. In shallower areas only one or two meters are used and the meters are placed as close to the bottom as practicable (2 m) or at middepth.

Equipment recovery is initiated by positioning the R/V *Polaris* in the vicinity of the current-meter array. Then by activating the command unit of the acoustic release from shipboard, an acoustic signal is transmitted from the submerged transducer to the receiver transducer on the release unit. If the correct code is identified by the acoustic release, it responds by separating the anchor and release unit. Due to buoyancy the entire mooring assembly, except the anchor, floats to the surface. The array assembly is still attached to the anchor by a 0.6-cm nylon rope which

was originally housed in a canister attached to the acoustic release.

After recovering the instruments, the anchor is recovered whenever possible by retrieving the nylon line. See Appendix B for postdeployment procedures.

Our experience indicates that the acoustic release sometimes may not work as described owing to marine growth or other obstruction at the release shackle, electronic failure, or other unknown reason. If this situation occurs, it is necessary to search for the current meter array for recovery by dragging. The dragging procedure involves running a weighted dragline between two small boats to search the area of deployment until the array is circled and snagged. Sometimes when water depth and current speed are favorable, the assembly can be recovered without a diver's assistance.

INSTRUMENT DESCRIPTION

The ENDECO-174 current meter (also see ENDECO Service Manual) is an axial-flow, ducted-impeller current-meter which records digital data on 0.6-cm magnetic tape (endless-loop 8-track cartridge). Recorded parameters include current speed and direction, and water temperature and conductivity. Data can be recorded up to approximately 40 days on one tape cartridge with the recording rate selected at 30 per hour. At each observation eight four-bit data words are written in series on the tape; that is, each of the four parameters is represented by a byte to be reconstructed from two four-bit words. Current speed is determined by measuring the displacement of an encoder disc which is driven by the impeller through a magnetic coupler and a 500:1 reduction gear. Heading of the meter is determined and digitized from the output of a damped magnetic compass. Temperature is determined by a thermolinear thermistor encased in stainless steel, and conductivity by an induction-type electrodeless conductivity probe. Current speed and direction are recorded in Gray code, and temperature and conductivity in binary code (Richards, 1971). Gray code is similar to binary code but is designed so that two bits never change value in successive Gray code sequence.

At the end of every hour a record mark is given which is represented by a record gap between the recorded data blocks. Every 24 hours, a 24-hour mark, which is signified by all "1's" in data, is written on the tape. Two conductivity reference values are generated internally every 24 hours and are recorded as reference data immediately following the 24-hour mark. These reference data are to be

incorporated in the data-reduction program to construct a regression curve for conductivity computation to compensate for any electronic drift due to change of ambient temperature or battery voltage. These reference data, in conjunction with hourly data gaps and 24-hour marks, are used to check the accuracy of timing of the data series, and to assist, when necessary, in reconstructing partially lost data.

The acoustic release used in the data collection program is the Innerspace Technology Model 431 (see Service Manual), which uses FM coding on a 22 kHz carrier frequency. The release unit contains an expandable link within the pressure case. Once the link is broken after receipt of the correct acoustic signal, a spring-loaded obstruction pin is retracted to permit free rotation of an output hook. When the output hook is turned it allows the shackle, which is attached to the anchor, to fall free, and thus permits separation of the release unit and anchor.

PARAMETER ACCURACY

Accuracy specifications given by the manufacturer for ENDECO-174 current meters are as follows: speed, ± 3.0 percent of full scale (257 cm/s) above 2.57 cm/s; direction, $\pm 7.2^{\circ}$; temperature, $\pm 0.2^{\circ}$ C; and conductivity, ± 0.55 mmho/cm.

TEMPERATURE

The accuracy of temperature measurements of all meters was checked periodically in a test tank $(1 \times 1 \times 2 \text{ m})$ in the laboratory. The mean temperature difference between recorded and actual values (two sets of readings for each meter) after computer correction was -0.01°C with a standard deviation of 0.14°C . Maximum temperature differences were -0.3 and $+0.2^{\circ}\text{C}$. The tests were conducted at room temperature (approximately 20° - 24°C).

CONDUCTIVITY

Conductivity accuracy was also examined in the same test tank at three conductivity values (approximately 15, 30, and 45 mmho/cm).

Corresponding binary data and actual conductivity values (determined by a Beckman Induction Salinometer), as well as binary conductivity reference values, were used in a linear regression analysis to determine two fixed "standard" conductances for each meter. A conductivity rating curve is established by combination of meter-generated conductivity reference values and "standard" conductances. Conductance values used for subsequent data reduction were either supplied by the manufacturer or generated in the U.S. Geological Survey laboratory, depending on which set gave closer agreement to induction salinometer-rated values. Once rating curves were established, all meters were retested again at two different

conductivities to verify the predictability of the rating curves. Using this method, the mean conductivity difference for all meters was placed at 0.13 mmho/cm. The standard deviation was 0.85 mmho/cm, and the maximum differences were -2.76 and +1.27 mmho/cm. The extremely large difference of -2.76 mmho/cm between the recorded and actual value was for only one meter, and may be erroneous. Unfortunately, this current meter leaked and was destroyed during a subsequent deployment, and no further analysis was possible. Recomputing the statistics by excluding that meter results in a mean of 0.25 mmho/cm, a standard deviation of 0.58 mmho/cm and maximum differences of -1.06 and +1.27 mmho/cm.

SPEED

The accuracy for measurement of current speed by ENDECO-174 current meter was examined at the U.S. Geological Survey Gulf Coast Hydroscience Center, Bay St. Louis, Mississippi. Generally, the impeller rating is linear in the test range of 0-250 cm/s. Each impeller supplied by ENDECO was rated in a continuous water tunnel at Johns Hopkins University before shipment. The speed coefficient recommended by the manufacturer for a perfect impeller is 50.1 rpm/knot. There is a 500:1 gear reduction between impeller and the encoder disc which is digitized and represented by 256 divisions; that is, a byte. Accordingly, the current velocity, V, or speed rating curve is worked out to be

$$V(cm/s) = 2.009 \frac{\Delta N}{\Delta r}$$

where ΔN is the difference between successive speed readings, and Δt is the sampling interval in minutes. To account for imperfection of individual impellers, the rating curve becomes

 $V (cm/s) = 2.009 (749/C_1) \frac{\Delta N}{\Delta t}$

where \mathbf{C}_{T} is the impeller coefficient obtained in the water tunnel at the Johns Hopkins University. The impeller coefficients supplied by the manufacturer have been found to be consistently in error by about 1 to 2 percent (too low) when compared with Geological Survey tow-tank results; this deviation appears to be the wall effect of the water tunnel. The U.S. Geological Survey tow-tank results are used in the computation. of speed. Another problem which may affect current-speed readings is marine growth and/or sea grass in contact with the impeller or bearing shaft. There is a tendency for sea grass to wrap around the impeller shaft between the impeller and current meter base, significantly hampering free movement of the impeller. At present, there is no remedy for the problem. The manufacturer is working on a new type of mold-injected impeller which we have tested in the field. These impellers are less susceptible to problems of this kind. New mold-injected impellers currently supplied by the manufacturer were tested in the Geological Survey tow tank and speed computations were found to be in error by about 15 percent (too high).

DIRECTION

The ENDECO-174 current meters use the Model-213 Digicourse compass for meters with serial numbers smaller than 133. The manufacturer has since replaced the compass with the Model-218 Digicourse compass for their meters with serial numbers greater than 132. The directional calibration was performed at the factory on a swing table.

While the meter was turned on and recording, the swing table rotated 15° every 10 minutes for at least two complete revolutions for a total test duration of no less than 8 hours. The calibration data were supplied to us, and this information was incorporated into our data-reduction program in the calculation for current direction. At this time verification of the calibration data for direction supplied by the manufacturer has not been attempted. However, we have encountered some difficulty in certain meters for which directional readings were affected by the lower tolerance limits associated with rolling and pitching of the current meter. This problem is further discussed in the next section.

HARDWARE RELIABILITY

Several problems encountered during the first 2 years of use of the ENDECO-174 current meters are documented here. The most damaging was leakage into the housings of several meters during deployment. Subsequent testing by the manufacturer indicated that one meter leaked through a fastening screw on the conductivity probe due to a faulty manufacturing procedure. This problem can be corrected by using a retrofit kit supplied by the manufacturer. The repair involves replacing one of the screws on the end cap of the conductivity probe with a special fitting to prevent leakage. The second meter presumably leaked at the end cap. This was probably caused by a worn or damaged "O" ring. To eliminate the possibility of leakage through the end cap, the end-cap "O" rings are now replaced routinely prior to each deployment. Two other meters which were completely flooded were either hit by vessels or entangled with the mooring line. The conductivity probes were sheared off both meter housings, thus permitting water to flood the meter through a wiring access hole. The manufacturer has remedied this problem by retrofitting the current meters with a PVC block underneath the conductivity probe to prevent the mooring line from being entangled with the conductivity probe. Less serious damage to several other meters included lost or broken shrouds, vanes, and impellers, also probably caused by passing vessels or mooring-line entanglement.

A less catastrophic problem which may affect data quality is the loss of impeller blades. While the impellers are specified to withstand currents to about 5 knots, one blade was lost at a low velocity

(less than 2 knots), and six of eight blades were lost on another occasion at a higher velocity. In the latter case it was impossible to determine the current velocity encountered because the data-tape cartridge was defective and no data were recorded. The expected maximum velocity at the site was 4 to 5 knots. Tow-tank evaluation of the damaged impeller indicated that the accuracy of speed is not severely affected at high current speed with loss of one or two blades; however, the threshold velocity of the current meter is certainly affected because the impeller is no longer balanced. This problem was brought to the attention of the manufacturer, whose solution is to replace the old impellers with a single-piece, mold-injected impeller of greater strength.

In addition to physical damage of current meters, a significant cause of lost data is related to the magnetic tape cartridge. Of the 14-percent data loss during the first 2 years of operation, tape-cartridge malfunctions (tapes not feeding out of hubs, improper tension and so forth) were responsible for approximately 60 percent of the total loss. Thirty-five percent of the data loss was due to physical damage of meters, and 5 percent for miscellaneous reasons. A possible reason for tape jamming is the swelling of tape caused by residual moisture within the current-meter housing. This is a particular problem when the meters are loaded in warm, moist air and subsequently deployed in colder water. The recommended solution to this problem consists of storing the tapes in desiccated containers and purging the instrument environment with Freon-12 to displace the moist air just before sealing it. Large or multiple desiccant bags should be used in the current meters.

In addition to the complete loss of data, there were several instances of poor performance in measuring one or more parameters. Four current

meters showed faulty temperature readings outside the range of manufacturer's specification: measurements with temperatures too high or too low, or a condition in which the temperatures changed by one or two degrees between readings. These problems may have been due to defects in specific integrated-circuit boards. Three of the four meters were returned to the manufacturer for repair and recalibration and one meter mysteriously appeared to have fixed itself. Subsequent calibration checks in a Geological Survey test tank showed that all meters measure temperature within acceptable limits of $+0.2^{\circ}$ C.

A problem relating to conductivity measurements became apparent in low-salinity water. While the meter was specified to have a low conductivity limit of 5 mmho/cm, 2 of the 11 meters did not indicate any conductivity lower than about 7 mmho/cm. This also was a problem with individual integrated circuit boards, and has since been corrected.

Directional information appears to suffer from two separate and distinct limitations. These are the allowable tilt angle of the compass and the lack of certain binary readings for specific headings on certain meters. As previously mentioned, the earlier model ENDECO-174 current meters utilize the Model-213 Digicourse compass. The Model-213 compass has limits on its pitch and roll axes of 5° of arc. While the neutrally buoyant meter and tethered attachment of meter to mooring line keep large fluctuations in pitch and roll to a minimum, long periods of repeating bearings do occasionally occur. The other factor affecting directional accuracy is the consistent lack of certain binary number readings (headings) with some meters. However, missing values seldom

occur for more than two or three sequential binary numbers. Because the heading resolution is 1.4° (increment between sequential binary numbers), it is assumed that this defect does not significantly affect the manufacturer's stated directional accuracy limit of $+7.2^{\circ}$.

The largest area of uncertainty remains in the measurement of conductivity values. Because the documentation from the manufacturer is limited, a short explanation of the design principle for measuring conductivity is included here. In order to compensate conductivity readings for electronic drift and reduced battery voltage over a long deployment, the conductivity circuitry contains two fixed-frequency outputs which are switched into the circuitry in place of the conductivity probe outputs once every 24 hours to generate a set of "synthetic" conductance values. The "synthetic" conductance values for each current meter are deduced from calibration tank test values in a linear regression. These "synthetic" conductance values which are assumed known and unchanged are used in conjunction with the conductance reference values recorded on the tape every 24th hour to generate a rating curve for computation of conductivity for the next 24-hour period. The conductance reference values generated every 24th hour should vary only slightly as the battery voltage changes. In some meters these values change radically, especially in the first and last days, thus rendering the conductivity calibration meaningless. The problem is apparently in the circuits of the individual instruments, and requires manufacturer servicing.

DATA PROCESSING

While working with fairly delicate recording instruments, numerous problems, often related to only one specific meter, may periodically occur. In order to enable rapid identification of malfunctions, a data-processing system which is structured around a microcomputer and tape translator (ENDECO-173) has been developed (Cheng and Gartner, 1979). The data-acquisition system has proven to be convenient and cost effective. The system consists of an LSI-11 microcomputer, two floppy disc drives, a 9-track tape drive, a line printer, a graphic cathode-ray-tube (CRT) terminal, and a data-tape translator as shown in Fig. 2. The CRT terminal performs the main Input-Output (I/O) control of the system, and any hard copy of output is produced on the line printer. The central processing unit (CPU) system-software resides on one floppy disc, whereas the other is user's working space. In this case, the raw-data tape recovered from the current meter is translated and stored on the user's floppy disc in binary numbers.

An ENDECO-173 data tape translator consisting of a microprocessor and limited memory is used to translate raw data and to communicate with the microcomputer. Upon command from the microcomputer, the translator engages its tape-drive mechanism and reads a block of four-bit data into its memory. The microprocessor in the translator combines pairs of four-bit data series into bytes and sends the block of data to the microcomputer as a block of 125 bytes of data for further processing. The tape translator is then set to standby awaiting the next instruction from the microcomputer.

The microcomputer includes an LSI-11 processor, a power supply, two memory boards with 28K words of onboard refreshed memory, a number

FIGURE 2. A microcomputer based current-meter data-acquisition system.

of RS-232 serial interface boards for communication with peripheral devices, and printer and floppy-disc controllers. The LSI-11 microprocessor has computing capability virtually equivalent to the CPU on the PDP-11/03 microcomputer and is supported by an extensive software library including the RT-11 operating system and FORTRAN and BASIC compilers.

The mass storage media are a dual floppy-disc-drive subsystem, and a 9-track tape drive. The floppy-disc subsystem contains two disc drives, a formatter, and a disc controller to interface with the microcomputer. Diskettes employed may be recorded on both sides in double density to provide a usable capacity of 1.2 mega-bytes. The data-reduction programs are written in FORTRAN by the users and reside on the system disc to provide maximum working space for data on the other drive.

A Tektronix-4010 graphics terminal is the primary input/output control for the system. Since the terminal is a graphics terminal, the Tektronix PLOT-10 plotting software package is used to produce various computer-generated graphics (Figures 3 to 8). Additionally, the data-processing system includes a Printronix-300 line printer for any hard copy of data, tables, or graphics.

Data processing procedures include the translation of 8-track tapes to binary file for storage on disc. The binary data file is further processed to produce engineering unit files, as well as files of various averages suitable for graphics and statistical analysis. This is accomplished through running a series of data-reduction programs (see Appendix C). The initial program, "Step 1", is used in conjunction with the data translator (ENDECO-173) to translate the 8-track tapes into binary form and store the data on flexible disc. "Step 2" is

then run to check values of the conductivity corrections and to check for missing hour blocks between the 24-hour readings. "Step 2A" is used to check for data completeness. This program searches the data file for any incomplete hour blocks and checks the file beginning and ending times against the logged times recorded at deployment and recovery of the current meter. "Step 3" may be executed to check for questionable temperature and conductivity data by searching for and flagging any data changes between consecutive readings greater than 5 percent of the sensor range. The data files can then be edited for obvious mistakes before the data are translated to engineering units. The engineering-unit data file is produced from program "Step 4", which converts binary data into engineering units, incorporating calibration data of individual sensors. This program outputs the engineering-unit file to either disc or 9-track tape. The program "Step 4A" was written to produce a time-averaged data file (speed and direction are vector averaged). Normally a 30-minute data file, which was produced from the original 2-minute sampling, is used for all subsequent plotting routines or tabulations.

A collection of other miscellaneous data-reduction programs is included in this report. They include "Step 5" and "Step 5A", which are plotting routines for parameter vs. time for 1 week of data and for the entire tape respectively. "Step 6" is a plotting routine for the tidal ellipse; "Step 7" and "Step 7A" are for plotting progressive vector diagrams for 1 week of data at a time or for the entire tape and "Step 8" plots a histogram of percent of observations for speed and direction.

Fig. 3. Typical speed and direction data for entire deployment

Fig. 4. Typical speed and direction data for 1 week of deployment

Fig. 5. Typical temperature and salinity data for 1 week of deployment

Fig. 6. Progressive vector diagram utilizing 1 week of data

Fig. 7. Tidal ellipse utilizing I week of data

Fig. 8. Histogram for speed and direction utilizing data from entire deployment

DISCUSSION

The ENDECO-174 current meter is a relatively new instrument designed for current measurements in an estuarine or near-shore environment. While current measurement in an estuary is a relatively new task for us, we have successfully worked out our current-meter deployment and recovery procedures and streamlined our data-processing methods for handling large volumes of current-meter data. Employment of the ENDECO-174 meters by the Geological Survey in our data-collection program has also served as an extensive field evaluation of the instrument. During the early stage of working with the ENDECO-174 current-meters, many suggestions for modification of the current meter have been made to the manufacturer. The suggestions have led to subsequent retromodification of the meters and, in turn, improvements in their reliability and performance. Many facts about the instruments, learned through personal contacts with the manufacturer, have proved valuable additions to documentation provided by the manufacturer. This open-file report was prepared to document our two-year working experience with ENDECO-174 current-meters and to assist other ENDECO-174 current-meter users.

REFERENCES

- Cheng, R. T., 1978, Comparison of a few recording current meters in San Francisco Bay, California, in Woodward, W., Mooers, C. N. K., and Jensen, K. eds. Proceedings of a working conference on current measurement: Technical Report DEL-SG-3-78, University of Delaware, Newark, Del., January 11-13, 1978, p. 293-301.
- Cheng, R. T., and Gartner, J. W., 1979, A microcomputer based system for current-meter data acquisition, in Marine Technology Society-Institute of Electrical and Electronics Engineers Oceans '79 Conference, San Diego, California, September 17-19, 1979, Proceedings, p. 288-291.
- Cheng, R. T., and Walters, R. A., 1978, Some finite element applications in environmental hydrodynamics: United States Japan Seminar on Interdisciplinary Finite Element Analysis, Cornell University, August 7-11, 1978, 33 p.
- Conomos, T. J., Nichols, F. H., Cheng, R. T., and Peterson, D. H., 1978, Field and modeling studies of San Francisco Bay, in Coastal Zone '78: Symposium on Technical, Environmental, Socioeconomic and Regulatory Aspects of Coastal Zone Management, ASCE, March 14-16, 1978, San Francisco, Calif., Proceedings, p. 1917-1927.
- Environmental Devices Corporation, 1978, ENDECO Type 174 digital magnetic tape recording tethered current meter; Service Manual: Marion,

 Mass., 13 p.
- Innerspace Technology Incorporated, 1978, Operation and maintenance manual, Model 430/431, acoustic release system: Waldwick, N.J., 41 p.
- McCullough, J. R., 1977, Problems in measuring currents near the ocean surface, in Marine Technology Society-Institute of Electrical and Electronics Engineers '77 Conference, Los Angeles, Calif., Proceedings, p. 46A1-46A7.

Richards, R. K., 1971, Digital design, New York, John Wiley, 571 p.

Walters, R. A., and Cheng, R. T., 1979, A two-dimensional hydrodynamic model of a tidal estuary: Advances in water resources, Vol. 2, December 1979, p. 177-184.

APPENDIX A

ENDECO CURRENT METER PREDEPLOYMENT CHECK LIST

- Remove impeller to access bearing assembly. Remove bearing assembly, clean and check bearings for free movement and replace if necessary.
 Reassemble bearing assembly and impeller.
- 2. Check external appearance of meter. Repair and paint as necessary.
- Insert new batteries (Eveready No. 1150 Size D) and check polarity.
 Record battery voltage.
- 4. Check pinger operation.
- 5. Place cardboard spacer between batteries and contacts.
- 6. Fast forward magnetic tape on a regular 8-track player at least once to ascertain that tape is free to feed out of hub without jamming.

 Degauss tape and place in disiccator. The tape used is Scotch

 Dynarange (low noise) 90-minute length (Scotch S-8TR-90).
- 7. Remove old "0" ring from end cap and clean "0" ring groove. Install new, greased "0" ring in groove after visually checking "0" ring for any nicks or damage.
- 8. Clean and demagnetize recording head.
 The following steps should be completed within 24 hours of deployment.
- 9. Remove cardboard circuit breaker from between batteries and contacts.
- 10. Center internal trim weight (~ 15 cm from end).
- 11. Remove tape from desiccator. Advance sensing foil on tape 6 inches past capstan and load tape in current meter. Close tape cartridge retainer.
- 12. Install desiccant bags in meter.
- 13. Press red reset button on meter. After motor stops press reset again.

 When motor stops, enter tape-on time on deployment log sheet.

- 14. Purge ambient air from meter with Freon-12 and immediately replace end cap making sure that the "O" ring is not damaged in the process.
- 15. Tighten knurled-nylon nuts finger tight, advancing all three nuts at same rate to avoid stripping the nuts.

NOTE: When replacing any metal parts (nuts, cotter pins, and so forth) use only stainless steel replacements where metal contacts metal.

APPENDIX B

ENDECO CURRENT METER POSTDEPLOYMENT CHECK LIST

- Check external appearance of meter. Record any condition which might affect data quality on the deployment log-sheet (loss of impeller blades, growth on impeller, sea grass around impeller shaft, and so forth).
- Remove end cap and press reset button. Enter time (tape-off time) on log-sheet. When motor stops, press reset button again.
- 3. Unload 8-track tape.
- 4. Replace end cap and clean all external surfaces of any marine growth or sediment.
- 5. Inspect tether line for any unusual wear.
- 6. Remove impeller, disassemble bearing assembly for cleaning and inspection. When complete, reassemble.
- 7. If time permits, reduce data tape to verify condition of recording quality prior to next deployment.

APPENDIX C

```
C
      PROGRAM STEP1
      THIS COMPUTER PROGRAM IS USED TO TRANSLATE ENDECO CURRENT
C
      METER DATA. THE DATA TAPE IS PLAYED BACK BY ENDECO-173.
C
      THE RAW DATA IS NOW STORED IN THE FILE CALLED
      'RAW, DAT'. THE FIRST RECORD IS DESCRIPTIVE INFORMATION.
C
      THE DATA ARE GIVEN IN BINARY; I.E. 0-255.
C
      COMMON /RBLOCK/ B, G, NBYTE, IBLKND, NBLK
      INTEGER DAY, DDAY, HOUR, RECLIGH
      INTEGER G(300), B(300)
      EXTERNAL RBYTE
      LOGICAL RAW
      DIMENSION LINE(32), TAPE(4)
      TYPE 2001
 2001 FORMAT(/ INITIALIZING ENDECO-173 DATA TRANSLATION()/
     1' PROGRAM. ****DO NOT FORGET TO TURN ON THE TIMER', /,
     2' IS THE FILE RAW. DAT TO BE SAVED? (T/F)')
      ACCEPT 1005, RAW
 1005 FORMAT(L1)
      IF(RAW) GD TD 5000 -
      RECLGH=120
      TYPE 2012
2012 FORMAT(' ESTIMATE THE TOTAL AMOUNT OF DATA TO BE TRANS',
     1'LATED', /, ' DEFINE THE NUMBER OF RECORDS FOR FILE RAW. DAT'
     2, /, ' NRECD=(I3)?')
      ACCEPT 1000, NRECD
      OPEN(UNIT=1, NAME='RAW, DAT', RECORDSIZE=120,
     1INITIALSIZE=NRECD, FORM='FORMATTED')
      NBLK=1
1000 FORMAT(13)
      TYPE 2004
     FORMAT( / WHAT WAS THE METER NUMBER? (14) /)
2004
      ACCEPT 2003, ISN
2003
     FORMAT(14)
      TYPE 2002
     FORMAT ( ' WHAT IS THE TAPE SERIAL NUMBER? (4A2) ' )
2002
      ACCEPT 1001, TAPE
1001
     FORMAT (4A2)
      TYPE 2006
      FORMAT ( ' ENTER THE DATA STARTING DATE AND HOUR '
2006
     1'(MMDDYY HHMM) (3I2,1X,I4)')
      ACCEPT 1003, MON, DAY, IYR, HOUR
1003
      FORMAT (BI2, 1X, I4)
      TYPE 2007
      FORMAT ( ' ENTER THE DATA ENDING DATE (312) ')
2007
      ACCEPT 1007, MMCN, DDAY, IIYR
1007
      FORMAT(312)
      TYPE 3001
      FORMAT( / WHAT IS THE DATA INTERVAL?(14) /)
3001
      ACCEPT 3002, INT
      FORMAT(I4)
3005
      TYPE 3003
      FORMAT( WHAT IS THE UTM GRID POSITION? (F5.1,1X,F5.1) ()
ECOCE
      ACCEPT 3004, UTMN, UTME
3004
      FORMAT(F5, 1, 1%, F5, 1)
      T/PE 2009
2009 FORMAT: WHAT WAS THE STATION LATITUDE AND LONGITUDE?
     1(DD) 14, MM, M, 13, DDE, 18, MM M) /)
      ACCEPT 1009, LAT. ALAT. LONG, ALONG
```

```
FORMAT(12, 1X, F4, 1, 1X, 13, 1X, F4, 1)
1009
      TYPE 3007
3007
      FORMAT(' WHAT WAS THE MLLW WATER DEPTH? (I3)')
      ACCEPT 3008, IDEPTH
3008
      FORMAT(I3)
      TYPE 2005
      FORMAT( ' WHAT WAS THE METER HEIGHT ABOVE BOTTOM? (13) ')
2005
      ACCEPT 3005, IHITE
3005
      FORMAT(I3)
      TYPE 2008
     FORMAT(' TYPE IN ANY LINE OF INFORMATION YOU WANT ',/,
2008
     1' TO BE PLACED IN THE FIRST RECORD OF THE FILE. '/)
      ACCEPT 1004, (LINE(I), I=1, 32)
1004
      FORMAT(32A2)
      WRITE(1, 2017) (LINE(I), I=1, 32), TAPE, ISN, LAT, ALAT, LONG, ALONG,
     1UTMN, UTME, IHITE, IDEPTH, MON, DAY, IYR, HOUR, MMON, DDAY, IIYR, INT
\mathbf{C}
      WRITE (6, 2017) (LINE(I), I=1, 32), TAPE, ISN, LAT, ALAT, LONG, ALONG,
     1UTMN, UTME, IHITE, IDEPTH, MON, DAY, IYR, HOUR, MMON, DDAY, IIYR, INT
     FORMAT(' REMARKS: ',32A2,//,
2017
     1' TAPE NUMBER: ', 4A2, /,
     2' METER NUMBER: ', 14, /,
                        1, 13, F5, 1, 1N/, 1X, 13, F5, 1, 1W/, /,
     3' POSITION:
     4' UTM POSITION: ', F8: 1, 'N', 1X, F8. 1, 'E', /,
     5' METER HEIGHT: ', I4, ' FEET', /,
     6' WATER DEPTH: ', I4, ' FEET', /,
     7' STARTING DATE: ', 12, 2('-', 12), 16, 1X, 'PST', /,
     8' RECOVERY DATE: ', 12, 2('-', 12), /,
     9' DATA INTERVAL: ', I4, ' MIN')
      DO 555 I=1,120
      B(I)=0
555
      CONTINUE
      CALL TRANS
      GO TO 6000
5000
      TYPE 1006
1006 FORMAT( TRANSFER FILE RAW, DAT TO OTHER NAME AND RERUN THIS ( ) / )
     1' PROGRAM ')
6000
     RETURN
      END
      SUBROUTINE RBYTE(ID)
      COMMON /RBLOCK/B, G, NBYTE, IBLKND, NBLK
       INTEGER G(300), B(300)
      NBYTE=NBYTE+1
      @(NBYTE)=IPEEK("176512)
       IF(G(NBYTE), NE. "377) GO TO 1
       IF(G(NBYTE-1), NE. "12) GO TO 1
       IF(G(NBYTE-2), NE. "215) GO TO 1
       IBLKND=1
1
      RETURN
      EMD
       SUBROUTINE TRANS
       COMMON /RBLOCK/ B, G, NBYTE, IBLKND, NBLK
      EXTERNAL RBYTE
       INTEGER G(300), B(300)
C
      SET UP INTERRUPT VECTOR
       I = INTSET("O10, 7, 0, RBYTE)
      TYPE 1001
      ACCEPT 1002, I
```

```
IF(I.EQ.O) GO TO 20
10
      TYPE 1005
      GO TO 5
20
      CONTINUE
      LBLOCK=0
      NBLOCK=0
      MBLOCK=1
      NBYTE=0
      IBLKND=0
       I=IPEEK("176512)
      ITPEND=0
\mathbf{C}
      ENABLE INTERRUPT
C
C
      CALL IPOKE("176510,"100)
C
C
      SEND ASCII ACK
(:
100
      CALL IPOKE ("176516, "6)
101
      CONTINUE
       I=IPEEK("176516)
       TO=SECNDS(O.)
200
       T=SECNDS(TO)
       IF (IBLKND, EQ. 1) GO TO 300
       IF(T.LT. 10.) GO TO 200
       TYPE 1006
       IF (ITPEND, EQ. 1) GO TO 400
       IBLKND=0
       ITPEND=1
       GO TO 100
300
       CALL GRYBIN
      MBYTE=NBYTE-5
       OBYTE=NBYTE-3
       IF (MBYTE, EQ. 120) GD TO 310
       TYPE 1015
310
       IF(LBLOCK, GT. G(OBYTE)) MBLOCK=MBLOCK+256
       NBLOCK=MBLOCK+G(OBYTE)
      LBLOCK=G(OBYTE)
       IF (NBLOCK, GT. 999) NBLOCK=NBLOCK-999
       IF (MBYTE, EQ. 120) GO TO 315
       TYPE 103, NBLOCK, MBYTE
       TYPE 103, (B(I), I=1, MBYTE)
345
       WRITE(1,1003) NBLOCK, MBYTE
      MBYTE=120
320
      WRITE(1:1003)(3(I), I=1, MBYTE)
       NBYTE=0
       NTRY=0
       NTRY=0
       IBLKND=0
       ITPEND=0
       60 TO 100
1001
       FORMAT( 'ENTER O WHEN ENDECO-173 IS READY ')
1002
      FORMAT(I1)
      FORMAT(2013)
1003
      FORMAT( '****WAKE UP , TYPE O AND (CR) ****/)
1005
       FORMAT( ' END OF DATA TAPE OR TIMEOUT ERROR '
1005
:03
       FORMAT.IX. SIT:
1015
      FURMAT(
                  WARNING: POSSIBLE MISSING DATA!
\langle \langle \cdot \rangle \rangle
       尼ETURN
       END
```

```
SUBROUTINE GRYBIN
      COMMON /RBLOCK/ B, G, NBYTE, IBLKND, NBLK
      INTEGER GRAY
      INTEGER G(300), B(300)
      DIMENSION GRAY(16)
      DATA GRAY/O, 1, 3, 2, 7, 6, 4, 5, 15, 14, 12, 13, 8, 9, 11, 10/
      MBYTE=NBYTE-5
      DO 100 I=1, MBYTE, 4
      NGH=G(I)/16
      NGL=G(I)-NGH*16
      NBH=GRAY(NGH+1)
      EVEN=NBH/2. 0
      IEVEN=NBH/2
      IF (EVEN. EQ. IEVEN) GO TO 50
      NBL=15-GRAY(NGL+1)
      GO TO 50
50
      NBL=GRAY(NGL+1)
60
      B(I)=NBH*16+NBL
      NGH=G(I+1)/16
      NGL=G(I+1)-NGH*16
      NBH=GRAY(NGH+1)
      EVEN=NBH/2. 0
      IEVEN=NBH/2
      IF (EVEN. EQ. IEVEN) GO TO 70
      NBL=15-GRAY(NGL+1)
      GO TO 80
70
      NBL=GRAY(NGL+1)
30
      B(I+1)=NBH*16+NBL
      B(I+2)=G(I+2)
      B(I+3)=G(I+3)
100
      CONTINUE
      IF(B(1), EQ. 170, AND, B(2), EQ. 170) GO TO 150
      GD TO 200
150
      DO 160 I=3,4
      NGH=B(I)/16
      NGL=B(I)-NGH*16
      NBH=GRAY(NGH+1)
      EVEN=NBH/2. 0
      IEVEN=NBH/2
      IF(EVEN. EQ. IEVEN) GO TO 155
      NBL=15-GRAY(NGL+1)
      GO TO 156
JOD NBL=GRAY(NGL+1)
155
    B(I)=NBH*15+NBL
150
     CONTINUE
200
      CONTINUE
      RETURN
```

EMD

```
PROGRAM STEP2
C
      THE PROGRAM IS DESIGNED TO READ AND WRITE ALL THE
C
      CONDUCTIVITY CORRECTIONS FOR ANY TAPE.
C
C
      DATA(I)=BINARY NUMBERS
C
      IDATA(1)=BLOCK NUMBER; IDATA(2)=NUMBER OF DATA IN BLOCK
      PAUSE' INSERT THE DATA DISK AND TYPE (CR). '
      DIMENSION IDATA(2), DATA(120), LINE(32)
      INTEGER DATA
      CALL ASSIGN(1, 'RAW. DAT')
3001
     FORMAT(213)
3002 FORMAT(/, 2X, 'THE BLOCK NUMBER IS', 1X, I3, /, 2X, 'THE NUMBER
     * OF DATA IN THE BLOCK ARE (, 1X, I3)
3003 FORMAT(2013)
3004 FORMAT(2X, 'THE LOW CONDUCTIVITY CHECK IS', 1X, I3, /, 2X, 'THE
     * HIGH CONDUCTIVITY CHECK IS', 1X, I3)
3005
      FORMAT(80A2, /)
      DO 1000 J=1,11
      READ(1,3005)(LINE(I), I=1,32)
      WRITE(6, 3005)(LINE(I), I=1,32)
1000
      CONTINUE
      K=0
      DO 2000 J=1,1000
      READ(1,3001)(IDATA(I), I=1,2)
      READ(1,3003)(DATA(I), I=1,120)
       THIS PERMITS THE FIRST CONDUCTIVITY CORRECTIONS TO BE WRITTEN
      IF (IDATA(2), GT. 60, AND, K. EQ. 0)GD TO 2002
C
       THE LAST BLOCK IN ANY 24 HOUR PERIOD ENDS WITH 170170255255
       THE NEXT 2 CONDUCTIVITY VALUES ARE THE CONDUCTIVITY CORRECTIONS.
      IF(DATA(117), EQ. 170, AND, DATA(118), EQ. 170)GD TO 2001
      GD TO 2000
      IF(DATA(119), EQ. 255, AND. DATA(120), EQ. 255)GO TO 2004
2001
      GO TO 2000
2004
      READ(1,3001)(IDATA(I), I=1,2)
      READ(1,3003)(DATA(I), I=1,120)
2002
      WRITE(6, 3002) IDATA(1), IDATA(2)
      WRITE(6, 3004) DATA(4), DATA(8)
      K=1
5000
      CONTINUE
      STOP
      END
```

```
C
      PROGRAM STEP2A
C
      THE PROGRAM IS DESIGNED TO CHECK DATA COMPLETENESS
C
C
      DATA(I)=BINARY NUMBERS
      IDATA(1)=BLOCK NUMBER; IDATA(2)=NUMBER OF DATA IN BLOCK
C
C
      TYPE 2003
2003
     FORMAT(' ENTER THE TAPÉ START JULIAN DATE AND TIME (IS,
     *1X, 2I2) ()
      ACCEPT 2005, IDATE, IHR, MIN
      INITIALIZE ISTORE
      DC 10 J=1, 10
10
      ISTORE(J)=0
2005
      FORMAT(I3, 1X, 2I2)
      IHR=IHR-1
      MIN=MIN+2
      IDATE=MOD(IDATE-1+(60*IHR+MIN)/1440,365)+1
      IHR=MOD(IHR+MIN/60,24)
      MIN=MOD(MIN, 60)
      DIMENSION IDATA(2), DATA(120), LINE(32), ISTORE(10)
      INTEGER DATA
      CALL ASSIGN(1, 'RAW. DAT')
3001
      FORMAT(213)
      FORMAT(/,2X, 'THE BLOCK NUMBER IS', 1X, I3, /, 2X, 'THE NUMBER
     * OF DATA IN THE BLOCK ARE', 1X, I3)
3003
      FORMAT(2013)
3005 FORMAT(80A2,/)
      DO 1000 J=1, 11
      READ(1,3005)(LINE(I),I=1,32)
      WRITE(6,3005)(LINE(I),I=1,32)
1000
      CONTINUE
2001
      DO 2000 J=1,1000
      READ(1,3001,END=400)(IDATA(I),I=1,2)
      READ(1,3003,END=400)(DATA(I), I=1,120)
      IF (IDATA(2), LT. 60, AND, J. EQ. 1)GO TO 2001
      IHR=IHR+1
      IDATE=MOD(IDATE-1+(60*IHR+MIN)/1440,365)+1
      IHR=MOD(IHR+MIN/60,24)
      IF(IDATA(2).LT. 120)WRITE(6, 3002)IDATA(1), IDATA(2)
      IF(IDATA(2).GT.120)WRITE(6,3002)IDATA(1),IDATA(2)
      DO 20 K=2,10
20
      ISTORE(K-1) = ISTORE(K)
      ISTORE(10)=IDATA(2)
2000
      CONTINUE
      BECAUSE THE TAPES END WITH 2 RESETS AND THE SECOND
:
      ONE ALWAYS BEGINS A NEW DATA BLOCK, IT IS NECESSARY
C
      TO USE THE FIRST ONE TO COMPUTE THE TIME.
400
      DO 30 K=1,10
      IOX=11-K
      IF (ISTORE (IDX), NE. 4)GO TO 40
30
      CONTINUE
      WRITE(6,5001)
5001
      FORMAT( ' MORE THAN 10 RESETS ')
40
      MIN=MIN+(ISTORE(IDX)/2)
      IHR=IHR-10+IDX
      IDATE=MCD(IDATE-1+(60+IHR+MIN)/1440,365)+1
      IHR=MOD(IHR+MIN/60,24)
      MIN=MOD(MIN, 60)
      WRITE(5, 2002) IDATE, IHR, MIN
2002 FORMAT(//); THE TAPE END DATE AND TIME IS/1%, IB, 1X, 212)
```

STOP END

```
C
      PROGRAM STEP3
C
      THIS PROGRAM CHECKS THE BINARY NUMBERS IN
C
      TEMPERATURE AND CONDUCTIVITY FOR A CHANGE
C
      OF 5% OR MORE
C
C
      DATA(I)=BINARY NUMBERS
C
      FDATA(I)=PHYSICAL PARAMETERS
C
      IDATA(1)=BLOCK NUMBER; IDATA(2)=NUMBER OF DATA IN BLOCK
C
      PAUSE' INSERT THE DATA DISK AND TYPE CCR>. '
      DIMENSION IDATA(2), DATA(120), LINE(32)
      INTEGER DATA
      CALL ASSIGN(1, 'RAW. DAT')
3001
      FORMAT(213)
3002 FORMAT(/,2X,'THE BLOCK NUMBER IS',1X,I3,/,2X,'THE NUMBER
     1 OF DATA IN THE BLOCK ARE (, 1X, I3)
3003 FORMAT(1X, 2013)
3004
      FORMAT(2013)
3005 FORMAT(80A2,/)
      DO 2003 J=1,11
      READ(1,3005)(LINE(I),I=1,32)
      WRITE(6,3005)(LINE(I), I=1,32)
2003
      CONTINUE
2050
     DO 2000 J=1,1000
      リリニリ
      READ(1,3001)(IDATA(I), I=1,2)
      READ(1,3004)(DATA(I), I=1,120)
      IF (IDATA(2), LT. 60, AND, J. EQ. 1)GO TO 2050
      DO 1000 I=1, 113, 4
      IF(IABS(DATA(I+2)-DATA(I+6)), GT, 26)GO TO 2001
      GD TO 1000
\mathbf{C}
C
      THESE CHECK TO SEE IF DIFFERENCE IS SCALE
C
      CHANGE OR 24 HOUR MARK
C
2001
      IF(DATA(I+2), GE, 229, AND, DATA(I+6), LE, 26)GD TO 1000
      IF(DATA(I+2), LE. 26, AND, DATA(I+6), GE. 229) GO TO 1000
      IF(DATA(I+6), EQ. 255, AND, DATA(I+2), NE. 255) GO TO 1000
      WRITE(6,3002)IDATA(1), IDATA(2)
      WRITE(6, 3003) (DATA(II), II=1, 120)
      GO TO 1001
1000
     CONTINUE
1001
      DO 1050 I=1, 113, 4
      IF(IABS(DATA(I+3)-DATA(I+7)).GT.26)GD TD 2002
      GO TO 1050
5005
      IF (I. EG. 1. AND. MOD (JJ, 24), EQ. 1)GO TO 1050
       IF (I. Eq. 5, AND, MOD (JJ, 24), EQ. 1) GO TO 1050
C
C
      THESE CHECK TO SEE IF DIFFERENCE IS SCALE CHANGE OR
      24 HOUR MARK.
C
       IF(DATA(I+3), GE, 229, AND, DATA(I+7), LE, 26)GD TD 1050
       IF(DATA(I+3), LE. 26, AND, DATA(I+7), GE, 229)GD TO 1050
       IF(DATA(I+7), EQ. 255, AND. DATA(I+3), NE. 255)90 TO 1050
      WRITE(5,3002) IDATA(1), IDATA(2)
      WRITE(6, 3003) (DATA(II), II=1, 120)
      GO TO 2000
1050
      CONTINUE
2000
      CONTINUE
      STOP
```

```
C
    PROGRAM STEP4
     THIS PROGRAM TRANSLATES RAW DATA TO REAL UNITS,
C
     APPLIES CORRECTIONS, AND CREATES A FILE CONSISTING
      OF THE TWO MINUTE VALUES .
      PAUSE ' FOR DATA TAPES RECORDED PRIOR TO JUNE 1979,
     * TERMINATE PROGRAM & EDIT STEP4. FOR AS FOLLOWS:
     * PLACE A "C" IN COLUMN 1 PRIOR TO STATEMENT 9500
     *AND ITS CONTINUATION. FOR TAPES AFTER
     * JUNE 1979, REMOVE THE COMMENT "C". IF PROGRAM
     * IS CORRECT, TYPE CCR>. '
      DIMENSION DEV(24), BIN(3), BATH(3), TSTCON(2)
      DIMENSION LINE(32), DATA(120), IFILE(14)
      LOGICAL PRNT
      COMMON FDATA(120), IDATA(2), SAL(120)
      INTEGER DATA, DEV
1001 FORMAT(I4)
      TYPE 0002
0002 FORMAT(' WHEN * APPPEARS, TYPE MT: AND 6 CHARACTER
     *OUTPUT FILE NAME. ', /)
CALL ASSIGN(2, IFILE, -10)
      CALL ASSIGN(4, 'CORR. DAT')
      CALL ASSIGN(1, 'RAW. DAT')
      TYPE 0003
0003 FORMAT (' WHAT WAS THE INSTRUMENT NUMBER (13)?')
      ACCEPT 1003, ISN
1003 FORMAT(13)
      TYPE 0004
0004 FORMAT (' WHAT IS THE TOTAL NUMBER OF HOURS OF DATA? (13)')
      ACCEPT 1004, IHRS
1004 FORMAT (I3)
      TYPE 0005
0005 FORMAT(' ENTER START JULIAN DATE, TIME, & LAST 2 DIGITS OF YEAR?
     1 (I3, 1X, I4, 1X, I2)')
      ACCEPT 1005, IDATE, IHR, MIN, IYEAR
1005 FORMAT(I3, 1X, I2, I2, 1X, I2)
      NM=365
      IF(MOD(IYEAR, 4), EQ. 0)NM=366
      MIN=MIN+02
      IDATE=MOD(IDATE-1+(60*IHR+MIN)/1440,NM)+1
      IHR=MOD(IHR+MIN/60,24)
      MIN=MOD(MIN, 60)
      TYPE 0006
0006 FORMAT(' WHAT IS THE HIGHEST EXPECTED CONDUCTIVITY (12)?')
      ACCEPT 1006, COND
1006 FORMAT(F2.0)
      TYPE 0007
      FORMAT(' SKIP HOW MANY HOURS UNTIL DATA IS DESIRED (13)?')
0007
      ACCEPT 1007, JHOURS
1007 FORMAT(I3)
      TYPE 0009
0009
      FORMAT( ' WHAT IS THE VARIATION? ADD SIGN
     1 FOR DIRECTION. (EAST=+; WEST=-) (F5.2)')
      ACCEPT 1009, VAR
1009 FORMAT(F5.2)
     READ FILE HEADER
     DO 150 J=1,11
3004 FORMAT(80A2,7)
```

```
READ(1,3004)(LINE(I),I=1,32)
      WRITE(2,3004)(LINE(I),I=1,32)
150
      CONTINUE
3001
      FORMAT(213)
3003
      FORMAT(2013)
      MDATA=0
3006
      FORMAT(F3.0)
3007
      FORMAT(2413)
3008
      FORMAT(3F4.1)
3009
      FORMAT(3F3.0)
3010
     FORMAT(2F5, 2)
C
C
      READ CURRENT METER CALIBRATION VALUES
C
      READ (4, 3006) COUNT
      READ(4,3007)(DEV(I),I=1,24)
      READ(4,3009)(BIN(I),I=1,3)
      READ(4,3008)(BATH(I),I=1,3)
      READ(4, 3010)(TSTCON(I), I=1, 2)
      DO 250 J=1, IHRS
      MJ=J
151
      READ(1, 3001)(IDATA(I), I=1, 2)
      IF(IDATA(2).GT. 120)IDATA(2)=120
      READ(1,3003)(DATA(I), I=1,120)
      IF (IDATA(2), LT. 60, AND, J. EQ. 1)GO TO 151
      IF(MOD(MJ, 24), EG. 1)GO TO 153
      GO TO 154
153
      ALCON=DATA(4)
      HCON=DATA(8)
C
C
      THIS PUTS CONDUCTIVITY CALIBRATION VALUES ON CORRECT
C
      SCALE DEPENDING ON METER NUMBER.
C
C9500
      IF(ISN.EQ. 31. OR. ISN. EQ. 37. OR. ISN. EQ. 40. OR.
      *ISN. EQ. 41. OR. ISN. EQ. 42)GO TO 9501
       IF (ALCON. GT. 191.) ALCON=ALCON-256
       IF (HCON, LT. 64. ) HCON=HCON+256
      HCON≔HCON-256.
      GO TO 9502
       IF (HCON, GT, 191, )HCON=HCON-256
9501
      IF(ALCON. LT. 64.) ALCON=ALCON+256
9502
      IF(MOD(MJ, 24), EQ. 1)ALCON=ALCON+256
      DATA(4) = DATA(12)
       DATA(8)=DATA(12)
C
C
       THE FIRST TWO CONDUCTIVITY READINGS ARE CONDUCTIVITY CHECKS AND
С
       THE DATA VALUES USED ARE MEARLY FROM THE NEXT REAL DATA VALUE
       IF(MOD(MJ, 24), EQ. 0)GO TO 156
       GO TO 157
156
       DATA(117) = (DATA(113) - DATA(109)) + DATA(113)
       DATA(118) = (DATA(114) - DATA(110)) + DATA(114)
       DATA(119)=(DATA(115)-DATA(111))+DATA(115)
       DATA(120) = (DATA(116) - DATA(112)) + DATA(116)
C
C
       THE LAST READINGS IN 24 HOUR DLOCK ARE EXTRAPOLATED
C
137
       CONTINUE
       IF(U.LT.JHOURS)GD TO 257
C
```

```
C
      THE FOLLOWING SECTION COMPUTES THE SPEED FROM BINARY NUMBERS
C
      DO 100 I=1, 120, 4
      IF(J, EQ, 1, AND, I, EQ, 1)DATA(I-4)=0
      IF(J. NE. 1, AND. I. EQ. 1) DATA(I-4) = MDATA
      IF(DATA(I-4), EQ. 999, AND, DATA(I), NE. 999) DATA(I-4)=0
      IDIF=(DATA(I)-DATA(I-4))
      IF(IDIF.LT.0)G0 T0 101
      IF(IDIF, GT, 230)GD TD 102
C
C
      IF THE CHANGE IN BINARY NUMBERS IS POSITIVE AND IS GREATER
C
      THAN 90% OF THE SCALE THE PROGRAM ASSUMES A CURRENT REVERSAL.
C
      GO TO 103
102
      FDATA(I)=257. 2/256. *(IDIF-255)*(749. /COUNT)
C
      THESE CORRECT FOR 2 TYPES OF IMPELLERS USED
C
      IF(IYEAR.LT.80)FDATA(I)=FDATA(I)+0.01*FDATA(I)
      IF(IYEAR.GE.80)FDATA(I)=FDATA(I)-0.15*FDATA(I)
      IF(DATA(I), EQ. 999)FDATA(I)=999.9
      GO TO 100
101
      IF(IDIF. GE. (-26))GO TO 103
C
C
      IF THE CHANGE IN BINARY NUMBERS IS NEGATIVE AND LESS THAN
C
      10% OF THE SCALE THE PROGRAM SENSES A CURRENT REVERSAL.
C
      THE NUMBER IS NEGATIVE BUT MORE THAN 10% OF THE SCALE THE
C
      PROGRAM ASSUMES A ROLLOVER (SCALE REPEATS).
      FDATA(I)=257, 2/256, *(IDIF+255)*(749, /COUNT)
      IF(IYEAR, LT, 80)FDATA(I)=FDATA(I)+0.01*FDATA(I)
      IF(IYEAR.GE.80)FDATA(I)=FDATA(I)-0.15*FDATA(I)
      IF(DATA(I), EQ. 999)FDATA(I)=999.9
      GO TO 100
100
      FDATA(I)=257. 2/256. *IDIF*(749. /COUNT)
      IF(IYEAR.LT.80)FDATA(I)=FDATA(I)+0.01*FDATA(I)
      IF(IYEAR.GE.80)FDATA(I)=FDATA(I)-0.15*FDATA(I)
      IF(DATA(I), EQ. 999)FDATA(I)=999.9
100
      CONTINUE
      MDATA=DATA(IDATA(2)-3)
\mathcal{C}
      THE FOLLOWING SECTION COMPUTES THE DIRECTION FROM BINARY NUMBERS
C
      DO 200 I=1,120,4
      FDATA(I+1)=DATA(I+1)*1.40525
      IF(FDATA(I+1), GT. 352, 5, AND, FDATA(I+1), LT. 7, 3)GO TO 203
      ANGLE=22. 5
      DO 201 K=2,24
      IF(FDATA(I+1), LT, ANGLE)DDEV=-DEV(K)
      IF(FDATA(I+1) LT. ANGLE)GO TO 202
      ANGLE=ANGLE+15
20 L
      CONTINUE
203
      DDEV=-DEV(1)
202
      FDATA(I+1)=FDATA(I+1)+VAR+DDEV
      IF:FDATA(I+1).GT. 360.)FDATA(I+1)=FDATA(I+1)+360.
      IF (DATA (I+1) EQ. 999) FDATA (I+1) =999. 9
200
      CONTINUE
C
       THE FOLLOWING COMPUTES THE CURVE FIT FOR TEMPERATURE
```

```
SBIN=BIN(1)+BIN(2)+BIN(3)
      SBATH=BATH(1)+BATH(2)+BATH(3)
      SBNBTH=BIN(1)*BATH(1)+BIN(2)*BATH(2)+BIN(3)*BATH(3)
      SBIN2=BIN(1)*BIN(1)+BIN(2)*BIN(2)+BIN(3)*BIN(3)
      B=(SBNBTH-(SBIN*SBATH/3.))/(SBIN2-(SBIN*SBIN/3.))
      A=(SBATH/3.)-(B*SBIN/3.)
      THE FOLLOWING SECTION COMPUTES THE TEMPERATURE FROM BINARY NUMBERS
C
      (RANGE LIMITED TO 5 DEGREES TO 30 DEGREES CENTIGRADE)
      DO 300 I=1, 120, 4
      IF(DATA(I+2), LT, 153)DATA(I+2)=DATA(I+2)+256
      FDATA(I+2)=A+B*DATA(I+2)
      IF(DATA(I+2), EQ, 999)FDATA(I+2)=999, 9
300
      CONTINUE
C
C
      THE FOLLOWING COMPUTES THE CURVE FIT FOR CONDUCTIVITY
      SUMBIN=ALCON + HCON
      SUMCON=TSTCON(1)+TSTCON(2)
      SUMBC=ALCON*TSTCON(1)+HCON*TSTCON(2)
      SMB IN2=ALCON*ALCON+HCON*HCON
      BB=(SUMBC-(SUMBIN*SUMCON/2.))/(SMBIN2-(SUMBIN*SUMBIN/2.))
      AA=(SUMCON/2.)-(BB*SUMBIN/2.)
C
C
      THE FOLLOWING SECTION COMPUTES THE COND FROM BINARY NUMBERS
C
      RANGE LIMITED TO 25MMHOS/CM
C
      DO 400 I=1, 120, 4
      CCON=-10. 24*COND+562. 2
      IF(DATA(I+3), LE, CCON)DATA(I+3)=DATA(I+3)+256.
      FDATA(I+3)=AA+BB*DATA(I+3)
      IF(DATA(I+3), EQ, 999)FDATA(I+3)=999, 9
400
      CONTINUE
      CALL SALIN
      DO 256 I=1,120,4
      FORMAT (1X, I3, 1X, 2I2, 5F10, 1)
3011
      WRITE(2,3011) IDATE, IHR, MIN, FDATA(I), FDATA(I+1),
     *FDATA(I+2), FDATA(I+3), SAL(I)
      MIN=MIN+2
      IDATE=MOD(IDATE-1+(60*IHR+MIN)/1440,NM)+1
      IHR=MOD(IHR+MIN/60,24)
      MIN=MOD(MIN, 60)
256
      CONTINUE
      GO TO 250
257
      IHR=IHR+1
      IDATE=MOD(IDATE-1+(60*IHR+MIN)/1440,NM)+1
      IHR=MOD(IHR+MIN/60,24)
      MIN=MOD (MIN, 60)
250
      CONTINUE
      END
C
€:
      SUBROUTINE SALIN
C
C
      THIS SUBROUTINE IS BASED ON THE NOTES OF
C
      D. W. PRITCHARD (APRIL, 1978)
C
      COMMON FDATA(120), IDATA(2), SAL(120)
      DO 25 I=1, 120, 4
```

TF=FDATA(I+2)-15.0 CKT=29.0473+0.86062*FDATA(I+2)+4.6704E-03*FDATA(I+2)**2-12. 5813E-05*FDATA(I+2)**3-2. 217E-08*FDATA(I+2)**4 FT=-1.024*TF-2.843E-02*TF**2+4.35E-05*TF**3+1.481E-04*TF**4-13. OE-06*TF**5 RT=FDATA(I+3)/CKT RD=RT-1. 0 BR=67, 1-8, 52*RD+3, 09*RD**2-26, 9*RD**3 FRT=-0. 25*RD*TF RF=RT+RT*RD*TF*(BR+FT+FRT)*1.0E-05 SAL(I)=-0.08996+28.29720*RF+12.80832*RF**2-10.67869*RF**3+ 15. 98624*RF**4-1. 32311*RF**5 IF(SAL(I), LE, O,)SAL(I) = 10IF(SAL(I), GT, O., AND, SAL(I), LE, 44.) SAL(I) = , 97667 * SAL(I) + , 1IF(SAL(I), GT. 44,)SAL(I)=999, 9 IF(FDATA(I+3), EQ. 999, 9)SAL(I)=999, 9 CONTINUE RETURN END

25

```
C
      PROGRAM STEP4A
      THIS PROGRAM AVERAGES THE ENGINEERING UNIT DATA
C
      LOGICAL PRNT
      DIMENSION SUME(6), SUMN(6), FDATA(128), ADATA(2,12), RSUM(6),
     *SUMPHI(6), SAL(120), ASAL(6), LINE(32), LLINE(32)
      INTEGER DAY, DDAY, HOUR, TAPE (4)
      TYPE 0010
      FORMAT(' WHEN * APPEARS, TYPE MT: AND 6 DIGIT INPUT
0010
     *DATA FILE NAME. (, /)
      CALL ASSIGN(1, IFILE, -10)
      CALL ASSIGN(3, 'PLOT. DAT')
      TYPE 0001
0001
      FORMAT(' WHAT IS THE AVERAGING INTERVAL DESIRED? (I3)')
      ACCEPT 0002, INT
0005
      FORMAT(I3)
      TYPE 0008
0008 FORMAT(' WHAT IS THE TOTAL NUMBER OF HOURS OF DATA? (I3)')
      ACCEPT 0009, IHRS
0009
      FORMAT(I3)
      TYPE 0011
      FORMAT(' DO YOU DESIRE A HARDCOPY OF THE DATA? (T OR F)')
0011
      ACCEPT 1011, PRNT
1011 FORMAT(L1)
      READ(1, 1013)(LINE(I), I=1, 32)
1013 FORMAT(9X, 32A2)
1000 FORMAT(80A2)
      READ(1, 1000)(LLINE(I), I=1, 32)
      READ(1,1001)TAPE
1001
      FORMAT(15X,4A2)
      READ(1, 1002) ISN
1002 FORMAT(15X, I4)
      READ(1, 1003)LAT, ALAT, LONG, ALONG
1003 FORMAT(15X, I3, F5, 1, 2X, I3, F5, 1)
      READ(1, 1004) UTMN, UTME
1004 FORMAT(15X, FB. 1, 2X, FB. 1)
      READ(1, 1002) IHITE
      READ(1, 1002) IDEPTH
      READ(1, 1005)MON, DAY, IYR, HOUR
1005 FORMAT(15X, I2, 1X, I2, 1X, I2, 2X, I4)
      READ(1, 1006) MMON, DDAY, IIYR
1006 FORMAT(15X, I2, IX, I2, IX, I2)
      READ(1, 1002)
      WRITE(3,0007)(LINE(I), I=1,32),(LLINE(I), I=1,32),
      *TAPE, ISN, LAT, ALAT, LONG, ALONG,
      IUTMN, UTME, IHITE, IDEPTH, MON, DAY, IYR, HOUR, MMON, DDAY, IIYR, INT
       IF(PRNT)WRITE(6,0007)(LINE(I),I=1,32),(LLINE(I),I=1,32),
      *TAPE, ISN, LAT, ALAT, LONG, ALONG,
      IUTMN, UTME, IHITE, IDEPTH, MON, DAY, IYR, HOUR, MMON, DDAY, IIYR, INT
0007
     FORMAT(' REMARKS: ',32A2,/,
     *1X, C2A2, /,
      1 ' TAPE NUMBER:
                       1,4A2,/,
      2' METER NUMBER: ', 14, /,
      3 POSITION:
                        '/ I3, F5, 1, 'N', 1X, I3, F5, 1, 'W', /,
      4' UTM POSITION: ', F3. 1, 'N', 1X, F8. 1, 'E', /,
      5' METER HEIGHT:
                       (, 14, ' FEET', /,
     6' WATER DEPTH ', 14, ' FEET' //
      7' STARTING DATE: ', 12, 2('-', 12', 16, 1%, 'PST', /,
      9' DATA INTERVAL: ', 14, ' MIN')
```

```
DO 900 N=1, IHRS
      NN=N
       IF(PRNT)GO TO 850
      GO TO 875
850
       IF(MOD(NN, 24), EQ. 1) WRITE(6, 0004)
875
      DO 100 J=1,30
      READ(1,0003)IDATE, IHR, IMIN, FDATA(4*J-3), FDATA(4*J-2),
      *FDATA(4*J-1), FDATA(4*J), SAL(4*J-3)
0003
      FORMAT(1X, I3, 1X, 2I2, 5F10. 1)
       IF(J. EQ. 1) JDATE=IDATE
      IF(J. EQ. 1)JHR=IHR
      IF (J. EG. 1) JMIN=IMIN
100
      CONTINUE
      JJ=60/INT
      DIV=INT/2
      KK=2*INT
      LL=1
      K=KK
      DO 200 II=1, JJ
      RSUM(II)=0
      SUMPHI(II)=0
      SUME(II)=0
      SUMN(II)=0
      DO 300 I=LL, KK, 4
      RPHI=FDATA(I+1)/57, 29578
      SPDN=(COS(RPHI))*FDATA(I)
      SPDE=(SIN(RPHI))*FDATA(I)
      SUME(II) = SUME(II) + SPDE
      SUMN(II)=SUMN(II)+SPDN
      IF(FDATA(I+1), EQ. 999, 9)BAD=999, 9
300
      CONTINUE
      RSUM(II)=SQRT(SUME(II)*SUME(II)+SUMN(II)*SUMN(II))/DIV
      IF (ABS (SUMN(II)), LE. 1, E-7)GD TD 700
      SUMPHI(II)=(ATAN(SUME(II)/SUMN(II)))*57, 29578
      IF(SUMPHI(II), LE. 0. ) GO TO 750
      IF(SUMN(II).LT.O.)SUMPHI(II)=180.+SUMPHI(II)
      GO TO 775
750
      IF(SUMN(II), GT. C., AND, SUME(II), LE. O.) SUMPHI(II) = 360, +SUMPHI(II)
      IF(SUMN(II), LT. O., AND, SUME(II), GE. O.) SUMPHI(II) = 180, +SUMPHI(II)
      IF(BAD, EQ, 999, 9)SUMPHI(II)=999, 9
      BAD=0
      GO TO 775
700
      IF(SUME(II) LT.O.)SUMPHI(II)=270.
      IF(SUME(II), GT. O.)SUMPHI(II)=90.
775
      CONTINUE
      SSAL=0
      DO 400 I=LL, KK, 4
      SSAL=SSAL+SAL(I)
400
      CONTINUE
      ASAL(II)=SSAL/DIV
      IF(ASAL(II).GT.36)ASAL(II)=999.9
      SDATA=0
      DO 500 I=LL, KK, 4
      SDATA=SDATA+FDATA(I+2)
500
      CONTINUE
      ADATA(G, II) = SDATA/DIV
      SDATA=0
      DO 600 I=LL, KK, 4
      5DATA=SDATA+FDATA(I+0)
300
      CONTINUE
```

```
ADATA(4, II)=SDATA/DIV
      IF(ADATA(4, II), GT, 60)ADATA(4, II)=999. 9
      LL=KK+1
      KK=K*(II+1)
500
      CONTINUE
      JMIN=JMIN+(INT/2)-1
      JDATE=MOD(JDATE-1+(60*JHR+JMIN)/1440,365)+1
      JHR=MOD(JHR+JMIN/60,24)
      JMIN=MOD(JMIN, 60)
0004 FORMAT(//,2X,'DATE',2X,'TIME',08X,'SPD',09X,'DIR',09X,
     *'TMP',09X,'COND',9X,'SAL',/,18X,'CM/SEC',7X,'DEG T',
     *7X, 'DEG C', 6X, 'MMHO/CM', 7X, '0/00')
      DO 800 II=1, JJ
      IF(PRNT)WRITE(6,0006)JDATE, JHR, JMIN
     *,RSUM(II),SUMPHI(II),ADATA(3,II),ADATA(4,II),ASAL(II)
      NIML=NIMA
      AHR=JHR
      DATE=JDATE+AHR/24. +AMIN/1440.
      SPD=RSUM(II)
      DIR=SUMPHI(II)
      TMP=ADATA(3, II)
      CON=ADATA(4, II)
      SSAL=ASAL(II)
      WRITE(3,0005)DATE, SPD, DIR, TMP, CON, SSAL
0005
      FORMAT(F10. 2, 5F10. 1)
      TMI+MIMU=MIMU
      JDATE=MOD(JDATE-1+(60*JHR+JMIN)/1440,365)+1
      JHR=MOD(JHR+JMIN/60,24)
      UMIN=MOD(JMIN, 60)
800
      CONTINUE
0006
      FORMAT(2X, I3, 3X, 2I2, 5F12, 1)
900
      CONTINUE
      STOP
      END
```

```
C
      PROGRAM STEP5
C
      PLOTTING ROUTINE: PARAMETER VS TIME (1 WEEK/PLOT)
\mathbf{C}
      INTEGER TAPE(4)
      DIMENSION IADE(16), JADE(19), KADE(15), LADE(12), MADE(17)
      DIMENSION DATE(336), SPD(336), DIR(336), TMP(336), CON(336),
     15SAL(336), POSIT(13)
      CALL ASSIGN(3, 'PLOT, DAT')
      COMMON/ADEO/IXY
      COMMON/PLOT/XMIN, XMAX, YMIN, YMAX, MINX, MAXX, MINY, MAXY,
     XAML, NIML, XAMI, NIMI*
      COMMON/TEKLET/NCHAR, XSIZE, YSIZE, SLOPE
      DATA IADE/74,85,76,73,65,
     *78, 32, 68, 65, 89, 44, 32, 49, 57, 56, 48/
      DATA JADE/84, 69, 77, 80, 69, 82, 65, 84, 85, 82, 69, 32, 40,
     *68,69,71,32,67,41/
      DATA KADE/83,65,76,73,78,73,84,89,32,40,48,47,48,48,41/
      DATA LADE/83, 80, 69, 69, 68, 32, 40, 67, 77, 47, 83, 41/
      DATA MADE/68, 73, 82, 69, 67, 84, 73, 79, 78, 32, 40, 68, 69, 71, 32, 84, 41/
      TYPE 0001
0001 FORMAT(' HOW MANY WEEKS OF DATA TO PLOT?')
      ACCEPT 1001, IWEEKS
1001 FORMAT(12)
      TYPE 0002
0002 FORMAT(' HOW MANY AVERAGES ARE THERE EVERY HOUR? (12) ')
      ACCEPT 1002, ITIMES
      INT=60/ITIMES
1002 FORMAT(I2)
      TYPE 0005
0005 FORMAT(' TYPE POSITION DESCRIPTION (UP TO 26 CHARACTERS).')
      ACCEPT 1005, (POSIT(NN), NN=1, 13)
1005 FORMAT(13A2)
      TYPE 0003
0003 FORMAT(' DO YOU WANT TO USE THE X/Y PLOTTER (YES=1; NO=0)')
      ACCEPT 1003, IXY
1003 FORMAT(I1)
      READ(3, 1001)
      READ(3, 1001)
      READ(3,0004)TAPE
0004 FORMAT(15X,4A2)
      READ(3, 1001)
      READ(3,0006)LAT, ALAT, LONG, ALONG
0006
      FORMAT(15X, I3, F5, 1, 2X, I3, F5, 1)
      READ(3, 1001)
      READ(3,0007) IHITE
0007 FORMAT(15X, I4)
      READ(3, 1001)
      READ(3,0008)IYR
0008 FORMAT(21X, I2)
      READ(3,1001)
      READ(3,1001)
     FORMAT(07X, 'CURRENT METER OBSERVATIONS (', 12, 1X,
     1'MINUTE AVERAGES)')
4001 FORMAT(07X,13A2,1X,'(',,I2,'-',F4.1,'N',1X,I3,'-',F4.1,'W)')
4002 FORMAT(07X, 'METER', 1X, I3, 1X, 'FEET ABOVE BED. TAPE
     1NUMBER (, 4A2, '. ')
      IPTS=168*ITIMES
      DO 10 J=1, IWEEKS
100
      FORMAT(F10, 2, 5F10, 1)
      JUP=0
```

```
DO 4501 JP=1, IPTS
      READ(3, 100, END=4500) DATE(JP), SPD(JP), DIR(JP), TMP(JP), CON(JP)
     1, SSAL(JP)
      JUP=JP
4501
      CONTINUE
4500
     IIDATE=DATE(1)
      XMIN=IIDATE
      XMAX=IIDATE+8
      YMIN=0.0
      YMAX=160.
      MINX=80
      MAXX=1000
      MINY=140
      MAXY=425
      PAUSE 'PAGE SCREEN AND CCR>'
      CALL INITT(120)
      CALL GRID(8, 12, 8, 4, 1, 0, 1)
      CALL TINPUT(LA)
      CALL PLOT (DATE, SPD, JUP, 0)
      CALL TINPUT(LA)
      CALL ASCALE(1,8,0)
      CALL ASCALE(3, 8, 0)
      NCHAR=16
      IADE(15)=IYR/10+48
      IADE(16)=IYR-10*(IYR/10)+48
      CALL LABEL(IADE, 1)
      NCHAR=12
      CALL LABEL(LADE, 3)
      CALL RRUTAT(O.)
      YMIN=0. 0
      0.00E=XAMY
      MINY=485
      MAXY=770
      CALL TINPUT(LA)
      CALL GRID(8, 12, 4, 9, 1. 0, 1)
      CALL TINPUT(LA)
      CALL PLOT (DATE, DIR, JUP, 0)
      CALL TINPUT(LA)
      CALL ASCALE(1,8,0)
      CALL ASCALE(3,4,0)
      NCHAR=17
      CALL LABEL (MADE, 3)
      CALL FINITT(0,70)
      WRITE (7,4000) INT
      WRITE(7,4001)(POSIT(NN),NN=1,13),LAT,ALAT,LONG,ALONG
      WRITE(7, 4002) IHITE, TAPE
      READ(5,999)UI
999
      FORMAT(15)
      YMIN=5.
      YMAX=25.
      MINY=140
      MAXY=425
      PAUSE 'PAGE SCREEN AND CORD'
      CALL INITT(120)
      CALL GRID(8, 12, 4, 5, 1, 0, 1)
      CALL TINPUT(LA)
      CALL PLOT (DATE, TMP, JUP, 0)
      CALL TINPUT(LA)
      CALL ASCALE(1,8,0)
      CALL ASCALE(3,4,0)
```

NCHAR=16 CALL LABEL (IADE, 1) NCHAR=19 CALL LABEL (JADE, 3) CALL RROTAT(O.) YMIN=O. YMAX=35. MINY=485 MAXY=770 CALL TINPUT(LA) CALL GRID(8, 12, 7, 5, 1, 0, 1) CALL TINPUT(LA) CALL PLOT (DATE, SSAL, JUP, 0) CALL TINPUT(LA) CALL ASCALE(1,8,0) CALL ASCALE(3,7,0) NCHAR=15 CALL LABEL (KADE, 3) CALL FINITT(0,70) WRITE(7, 4000)INT WRITE(7,4001)(PDSIT(NN),NN=1,13),LAT,ALAT,LONG,ALONG WRITE(7, 4002) IHITE, TAPE READ(5,999)JI CONTINUE STOP END

10

```
С
      PROGRAM STEP5A
С
      PLOTTING ROUTINE: PARAMETER VS TIME (ENTIRE TAPE)
      DIMENSION IADE(16), JADE(17), KADE(15), LADE(12), MADE(17)
      DIMENSION DATE(336), Y(336), POSIT(13)
      CALL ASSIGN(3, 'PLOT. DAT')
      COMMON/ADEO/IXY
      COMMON/PLOT/XMIN, XMAX, YMIN, YMAX, MINX, MAXX, MINY, MAXY,
    **IMIN, IMAX, JMIN, JMAX
      COMMON/TEKLET/NCHAR, XSIZE, YSIZE, SLOPE
      INTEGER TAPE(4)
      DATA IADE/74,85,76,73,65,
     *78, 32, 68, 65, 89, 44, 32, 49, 57, 56, 48/
      DATA JADE/84, 69, 77, 80, 69, 82, 65, 84, 85, 82, 69, 32, 40,
     *68, 69, 71, 32, 67, 41/
      DATA KADE/83, 65, 76, 73, 78, 73, 84, 89, 32, 40, 48, 47, 48, 48, 41/
      DATA LADE/83, 80, 69, 69, 68, 32, 40, 67, 77, 47, 83, 41/
      DATA MADE/68, 73, 82, 69, 67, 84, 73, 79, 78, 32, 40, 68, 69, 71, 32, 84, 41/
      TYPE 0001
      FORMAT(' HOW MANY WEEKS OF DATA TO PLOT?')
0001
      ACCEPT 1001, IWEEKS
      FORMAT(I2)
1001
      TYPE 0002
      FORMAT(' HOW MANY AVERAGES ARE THERE EVERY HOUR? (12) ')
0002
      ACCEPT 1002, ITIMES
      INT=60/ITIMES
      FORMAT(I2)
1002
      TYPE 0003
      FORMAT(' TYPE POSITION DESCRIPTION (UP TO 26 CHARACTERS).')
E000
      ACCEPT 1003, (POSIT(NN), NN=1, 13)
     FORMAT(13A2)
1003
      TYPE 0004
      FORMAT(' DO YOU WANT TO USE THE X/Y PLOTTER? (YES=1; NO=0)')
0004
      ACCEPT 1004, IXY
      FORMAT(I1)
1004
      READ(3, 1001)
      READ(3, 1001)
      READ(3,0005) TAPE
0005
      FORMAT(15X,4A2)
      READ(3, 1001)
      READ(3,0006)LAT, ALAT, LONG, ALONG
0006
      FORMAT(15X, I3, F5, 1, 2X, I3, F5, 1)
      READ(3, 1001)
      READ(3,0007) IHITE
      FORMAT(15X, I4)
0007
      READ(3,1001)
      READ(3,000B) IYR
8000
      FORMAT(21X, I2)
      READ(3, 1001)
      READ(3,1001)
4000
     FORMAT(07X, 'CURRENT METER OBSERVATIONS (', 12, 1X,
      1 'MINUTE AVERAGES) ')
      FORMAT(07X, 13A2, 1X, '(',, I2, '-', F4, 1, 'N', 1X, I3, '-', F4, 1, 'W)')
4001
4002 FORMAT(07X, 'METER', 1X, I3, 1X, 'FEET ABOVE BED. TAPE
      1NUMBER (, 4A2, (, ')
       IPTS=168*ITIMES
       JJP=0
      ND=IWEEKS*7
       U=MIMX
       XMAX=XMIN+ND
```

```
YMIN=0.0
      YMAX=160.
      MINX=80
      MAXX=1000
      MINY=140
      MAXY=425
      PAUSE 'PAGE SCREEN AND CORD'
      CALL INITT(120)
      CALL GRID(1, ND, 8, 4, 1, 0, 1)
      DO 10 J=1, IWEEKS
      DO 15 JP=1, IPTS
      READ(3, 100, END=4400) DATE(JP), Y(JP)
      JUP=JP
15
      CONTINUE
      FORMAT(F10. 2, F10. 1)
100
4400
      IF(J. NE. 1)GD TD 4500
      IIDATE=DATE(1)
      XMIN=IIDATE
      XMAX=IIDATE+ND
      CALL TINPUT(LA)
4500
      CALL PLOT(DATE, Y, JJP, 0)
10
      CONTINUE
      CALL TINPUT(LA)
      CALL ASCALE(1, ND/7, 0)
      CALL ASCALE(3,8,0)
      NCHAR=16
      IADE(15) = IYR/10+48
      IADE(16)=IYR-10*(IYR/10)+48
      CALL LABEL (IADE, 1)
      NCHAR=12
      CALL LABEL (LADE, 3)
      REWIND 3
<:
C
      THE DO LOOPS FOLLOWING REWINDS ARE TO REREAD PAST
C
      THE HEADER TO THE DATA PORTION OF FILE.
      DO 20 K=1,11
      READ(3, 1001)
20
      CONTINUE
      CALL RROTAT(O.)
      YMIN=0.0
      YMAX=360. 0
      MINY=485
      MAXY=770
      CALL TINPUT(LA)
      CALL GRID(1, ND, 4, 9, 1, 0, 1)
      JUP=0
      DO 11 J=1, IWEEKS
      DO 16 JP=1, IPTS
      READ(3, 101, END=4501) DATE(UP), Y(UP)
      JUP=JP
13
      CONTINUE
101
      FORMAT(F10. 2, 10X, F10. 1)
      CALL TIMPUT(LA)
      CALL PLOT(DATE, Y, JUP, 0)
4501
      CONTINUE
1.1
      CALL TIMPUT(LA)
      CALL ASCALE(1, ND/7, 0)
      CALL ASCALE(3.4.0)
      NCHAR=17
```

```
CALL LABEL (MADE, 3)
      REWIND 3
      DO 21 K=1,11
      READ(3, 1001)
21
      CONTINUE
      CALL TINPUT(LA)
      CALL FINITT(0,70)
      WRITE (7,4000) INT
      WRITE(7,4001)(POSIT(NN), NN=1,13), LAT, ALAT, LONG, ALONG
      WRITE(7, 4002) IHITE, TAPE
      READ(5,999)JI
999
      FORMAT(15)
      YMIN=5.
      YMAX=25.
      MINY=140
      MAXY=425
      PAUSE 'PAGE SCREEN AND (CR)'
      CALL INITT(120)
      CALL GRID(1, ND, 4, 5, 1, 0, 1)
      JJP=0
      DO 12 J=1, IWEEKS
      DO 17 JP=1, IPTS
      READ(3, 102, END=4502) DATE(JP), Y(JP)
      JUP=JP
17
      CONTINUE
102
      FORMAT(F10, 2, 20X, F10, 1)
      CALL TINPUT(LA)
4502
      CALL PLOT (DATE, Y, JJP, 0)
12
      CONTINUE
      CALL TINPUT(LA)
      CALL ASCALE(1, ND/7, 0)
      CALL ASCALE(3,4,0)
      NCHAR=16
      CALL LABEL (IADE, 1)
      NCHAR=19
      CALL LABEL (JADE, 3)
      REWIND 3
      DO 22 K=1,11
      READ(3, 1001)
22
      CONTINUE
      CALL RROTAT(O.)
      YMIN=O.
      YMAX=35.
      MINY=485
      MAXY=770
      CALL TINPUT(LA)
      CALL GRID(1, ND, 7, 5, 1, 0, 1)
      JJP=0
      DO 13 J=1, IWEEKS
      DO 18 JP=1, IPTS
      READ(3, 103, END=4503) DATE(JP), Y(JP)
      JUP=JP
13
      CONTINUE
103
      FORMAT(F10, 2, 40X, F10, 1)
       CALL TINPUT(LA)
4503
      CALL PLOT(DATE, Y, JUP, 0)
13
      CONTINUE
       CALL TINPUT(LA)
       CALL ASCALE(1, ND/7, 0)
       CALL ASCALE(3,7,0)
```

NCHAR=15
CALL LABEL(KADE,3)
REWIND 3
CALL FINITT(0,70)
WRITE(7,4000)INT
WRITE(7,4001)(POSIT(NN),NN=1,13),LAT,ALAT,LONG,ALONG
WRITE(7,4002)IHITE,TAPE
READ(5,999)JI
STOP
END

```
PROGRAM STEP 6
C
      PLOTTING ROUTINE: TIDAL ELLIPSE
C
      COMMON /PLOT/ XMIN, XMAX, YMIN, YMAX, MINX, MAXX, MINY, MAXY,
                      XAMU, VIMU, XAMI, VIMI
      COMMON /TEKLET/ NCHAR, XSIZE, YSIZE, SLOPE
      COMMON/ADEO/IXY
      DIMENSION U(340), V(340)
      DIMENSION IADE(6), POSIT(13)
      DATA IADE/85, 40, 77, 47, 83, 41/
      DATA MINX, MAXX, MINY, MAXY/220, 800, 160, 740/
      INTEGER DAY, TAPE (4)
      TYPE 602
      FORMAT( 1
                 TYPE POSITION DESCRIPTION (UP TO 26 CHARACTERS)')
602
      ACCEPT 603, (POSIT(NN), NN=1, 13)
600
      FORMAT(13A2)
      TYPE 600
      FORMAT( ' HOW MANY AVERAGES ARE THERE EVERY HOUR? (12) ')
500
      ACCEPT 601, ITIMES
601
      FORMAT(I2)
      TYPE 604
      FORMAT(' HOW MANY TOTAL WEEKS OF DATA? (12)')
604
      ACCEPT 605, IWEEK
      FORMAT(I2)
605
      TYPE 606
606
      FORMAT(' DO YOU WANT TO USE THE X/Y PLOTTER (YES=1; NO=0)')
      ACCEPT 607, IXY
607
      FORMAT(I1)
      CALL ASSIGN (1, 'PLOT. DAT')
      READ(1,601)
      READ(1,601)
      READ(1,700) TAPE
700
      FORMAT(15X, 4A2)
      READ(1,601)
      READ(1,701)LAT, ALAT, LONG, ALONG
701
      FORMAT(15X, I3, F5. 1, 2X, I3, F5. 1)
      READ(1,601)
      READ(1,702)IHITE
      FORMAT (15X, 14)
702
      READ(1,601)
      READ(1,703)MON, DAY, IYR
700
      FORMAT(15X, I2, 1X, I2, 1X, I2)
      READ(1,601)
      READ(1,601)
C
      READ DATA POINTS
       DO 13 K=1, TWEEK
       JT≕C
      M=ITIMES*168
       DO 72 L=1, M
      READ (1,1000.END=81) TET, SPEED, DIR
1000
      FORMAT(F10. 2, 2F10. 1)
       I+TU=TU
       SPEED=SPEED/100.
       U(JT)=SPEED+SIN(DIR/57.3)
       V(JT)=SPEED*COS(DIR/57.C)
72
       CONTINUE
       GO TO 35
81
       JT=JT+1
       SPEED=SPEED. 100.
       UNUT) = SPEED*ELM(DIR/ST.C)
```

```
V(JT)=SPEED*COS(DIR/57.3)
85
      CONTINUE
      SET VIRTUAL WINDOW
C
      IDX=0
      XMAX=O.
      YMAX=0.
      IDX = IDX + 1
      DO 110 J=1, JT
      YMAX=ABS(U(J))
      IF(XMAX, LT, YMAX) XMAX=YMAX
      YMAX=ABS(V(J))
110
       IF(XMAX.LT, YMAX) XMAX=YMAX
       IF(XMAX.LT..20) GO TO 125
       I=2.*XMAX+1.
       XMAX=FLOAT(I)*.5
       GO TO 130
125
      XMAX=. 20
130
      XMIN=-XMAX
      YMAX=XMAX
       YMIN=XMIN
      PAUSE 'PAGE SCREEN AND TYPE (CR>'
      CALL INITT(120)
      CALL GRID(2, 5, 2, 5, 1, , 1)
       CALL TINPUT(LA)
       CALL PLOT (U, V, JT, O)
       SLOPE=0.
       CALL TINPUT(LA)
       CALL ASCALE(1,2,1)
       CALL ASCALE(3,2,1)
       NCHAR=6
       IADE(1)=85
       CALL LABEL (IADE, 1)
       NCHAR=6
       IADE(1)=86
       CALL LABEL (IADE, 3)
       CALL FINITT(0,70)
       WRITE(7, 1009) MON, DAY, IYR, K
      FORMAT(16X, 'TIDAL ELLIPSE', 6X, I2, '-', I2, '-', I2,
1009
      *6X, 'WEEK NUMBER', 1X, I1)
       WRITE(7, 1010)(POSIT(NN), NN=1, 13), LAT, ALAT, LONG, ALONG
       FORMAT(16X, 13A2, 2X, I2, '-', F4, 1, 'N', IX, I3, '-', F4, 1, 'W')
1010
       WRITE(7, 1011) IHITE, TAPE
1011 FORMAT(16X, 'METER', 1X, I3, 1X, 'FEET ABOVE BED. TAPE
      1 NUMBER (, 1X, 4A2, 1, 1)
       READ(5, 505) J
       TYPE 500
500
      FORMAT( ' ENTER BEGINNING DATE FOR NEXT WEEK
      * OF DATA (312)')
       ACCEPT 510, MON, DAY, IYR
510
       FORMAT(312)
10
      CONTINUE
       STOP
```

END

```
C
      PROGRAM STEP7
C
      PLOTTING ROUTINE: PROGRESSIVE VECTOR DIAGRAM (1 WEEK
C
      PER PLOT)
      DIMENSION IADE(5), POSIT(13)
      DIMENSION DATE(340), SPD(340), DIR(340), X(340), Y(340)
      CALL ASSIGN(3, 'PLOT. DAT')
      COMMON/ADEO/IXY
      COMMON/PLOT/XMIN, XMAX, YMIN, YMAX, MINX, MAXX, MINY, MAXY,
     *IMIN, IMAX, JMIN, JMAX
      COMMON/TEKLET/NCHAR, XSIZE, YSIZE, SLOPE
      INTEGER TAPE (4), DAY
      DATA IADE/88,40,75,77,41/
      TYPE 0001
      FORMAT(' HOW MANY AVERAGES ARE THERE EACH HOUR? (12)')
0001
      ACCEPT 1001, ITIMES
1001
     FORMAT(I2)
      INT=60/ITIMES
      TYPE 0002
      FORMAT(' HOW MANY TOTAL WEEKS OF DATA? (12)')
0002
      ACCEPT 1002, IWEEK
1002 FORMAT(I2)
      TYPE 0003
0003
     FORMAT( ' WHAT IS THE DESIRED N/S PLOT RANGE IN KILOMETERS?
     *(I4,1X,I4)')
      ACCEPT 1003, IYMIN, IYMAX
1003
      FORMAT(14, 1X, 14)
      TYPE 0004
      FORMAT(' WHAT IS THE DESIRED E/W PLOT RANGE IN KILOMETERS?
0004
     * (I4,1X,I4)')
      ACCEPT 1004, IXMIN, IXMAX
1004
      FORMAT(14, 1X, 14)
      TYPE 0005
     FORMAT(' DO YOU WANT TO USE THE X/Y PLOTTER? (YES=1; NO=0)')
0005
      ACCEPT 1005, IXY
     FORMAT(I1)
1005
      TYPE 0007
      FORMAT(' TYPE POSITION DESCRIPTION (UP TO 26 CHARACTERS)')
0007
      ACCEPT 1007, (POSIT(NN), NN=1, 13)
      FORMAT (13A2)
1007
      READ (3, 1001)
      READ(3, 1001)
      READ (3,0006) TAPE
0006
      FORMAT(15X, 4A2)
      READ(3,1001)
      READ(3,0008)LAT, ALAT, LONG, ALONG
0008
      FORMAT (15X, I3, F5, 1, 2X, I3, F5, 1)
      READ(3, 1001)
      READ(3,0009)IHITE
0009
      FORMAT(15X, I4)
      READ(3, 1001)
      READ(3,0010)MON, DAY, IYR
0010
      FORMAT(15X, I2, 1X, I2, 1X, I2)
      READ(3, 1001)
      READ(3,1001)
      XMIN=IXMIN
      XMAX=IXMAX
      YMIN=IYMIN
      YMAX=IYMAX
      WINX=550
```

```
MAXX=800
      MINY=160
      MAXY=740
      X(1)=0.0
      Y(1)=0.0
      M=ITIMES*168
      DO 13 K=1, IWEEK
      PAUSE 'PAGE SCREEN AND TYPE CCR>'
      CALL INITT(120)
      CALL GRID(2, 10, 2, 10, 1., 1)
      DO 102 J=2, M+1
100
      FORMAT(F10. 2, 2F10. 1)
101
      READ(3, 100, END=102) DATE(J), SPD(J), DIR(J)
      SPD(J)=SPD(J)*1.0E-5
      しし しし
105
      CONTINUE
103
      DO 11 J=2, JJ
      DT=60/ITIMES*60
      X(J)=SIN(DIR(J)/57.3)*SPD(J)*DT+X(J-1)
      Y(J)=COS(DIR(J)/57.3)*SPD(J)*DT+Y(J-1)
201
      11
      CONTINUE
      CALL TINPUT(LA)
      CALL PLOT(X, Y, JJ, O)
      CALL TINPUT(LA)
14
      CALL ASCALE(1,2,0)
      IMIN=IMIN-5
      CALL ASCALE(3,2,0)
      NCHAR=5
      CALL LABEL (IADE, 1)
      IADE(1)=89
      NCHAR=5
      CALL LABEL (IADE, 3)
      CALL FINITT(0,70)
      WRITE(7, 1009)MON, DAY, IYR, K
      FORMAT(16X, 'PROGRESSIVE VECTOR DIAGRAM', 1X, I2, '-', I2, '-', I2,
1009
     #1X, 'WEEK NO. ', 1X, I1)
      WRITE(7,1010)(POSIT(NN), NN=1,13), LAT, ALAT, LONG, ALONG
      FORMAT(16X, 13A2, 1X, '(', I2, '-', F4, 1, 'N', 1X, I3, '-', F4, 1, 'W)')
1010
      WRITE(7, 1011) IHITE, TAPE
      FORMAT(16X, 'METER', 1X, I3, 1X, 'FEET ABOVE BED. TAPE
1011
     * NUMBER (, 4A2, (, 1)
      READ(5,999)JI
779
      FORMAT(I5)
      TYPE 500
      FORMAT( ' ENTER BEGINNING DATE FOR NEXT WEEK OF DATA(312) ')
500
      ACCEPT 501, MON, DAY, IYR
501
      FORMAT(312)
13
      CONTINUE
      STOP
```

END

```
PROGRAM STEP7A
С
      PLOTTING ROUTINE: PROGRESSIVE VECTOR DIAGRAM (FULL TAPE)
      DIMENSION IADE(5), POSIT(13)
      DIMENSION DATE(340), SPD(340), DIR(340), X(340), Y(340)
      CALL ASSIGN(3, 'PLOT, DAT')
      COMMON/ADEO/IXY
      COMMON/PLOT/XMIN, XMAX, YMIN, YMAX, MINX, MAXX, MINY, MAXY,
     *IMIN, IMAX, JMIN, JMAX
      COMMON/TEKLET/NCHAR, XSIZE, YSIZE, SLOPE
      INTEGER TAPE (4), DAY, DDAY
      DATA IADE/88, 40, 75, 77, 41/
      TYPE 0001
                HOW MANY AVERAGES ARE THERE EACH HOUR? (12) 1)
0001
      FORMAT('
      ACCEPT 1001, ITIMES
1001
      FORMAT(12)
      INT=60/ITIMES
      TYPE 0002
0002
      FORMAT(' HOW MANY TOTAL WEEKS OF DATA? (12)')
      ACCEPT 1002, IWEEK
     FORMAT(I2)
1002
      TYPE 0003
     FORMAT(' WHAT IS THE DESIRED N/S PLOT RANGE IN KILOMETERS?
0003
     *(I4,1X,I4)')
      ACCEPT 1003, IYMIN, IYMAX
1003
      FORMAT(14, 1X, 14)
      TYPE 0004
0004
     FORMAT(' WHAT IS THE DESIRED E/W PLOT RANGE IN KILOMETERS?
     * (I4,1X,I4)')
    ACCEPT 1004, IXMIN, IXMAX
1004 FORMAT(I4, 1X, I4)
      TYPE 0005
0005
     FORMAT( ' DO YOU WANT TO USE THE X/Y PLOTTER (YES=1; NO=0) ')
      ACCEPT 1005, IXY
1005
      FORMAT(I1)
      TYPE 0007
      FORMAT(' TYPE POSITION DESCRIPTION (UP TO 26 CHARACTERS)')
0007
      ACCEPT 1007, (POSIT(NN), NN=1, 13)
1007
     FORMAT(13A2)
      READ(3, 1001)
      READ(3,1001)
      READ(3,0006)TAPE
0005
      FORMAT(15X, 4A2)
      READ(3, 1001)
      READ(3,0008)LAT, ALAT, LONG, ALONG
0008
      FORMAT(15X, I3, F5, 1, 2X, I3, F5, 1)
      READ(0, 1001)
      READ(3,0009) IHITE
0009
      FORMAT (15X, 14)
      READ(3, 1001)
      READ(3,0010)MON, DAY, IYR
0010
      FORMAT(15X, I2, 1X, I2, 1X, I2)
      READ(0,0012)MMON, DDAY, IIYR
0012
      FORMAT(15X, I2, 1X, I2, 1X, I2)
      READ(3,1001)
       XMIN=IXMIN
      XMAX=IXMAX
      YMIN=IYMIN
      YMAX=IYMAX
      MINX=SEC
      200号:XXAM
```

```
MINY=160
      MAXY=740
      X(1)=0.0
      Y(1)=0.0
      M=ITIMES*168
      PAUSE 'PAGE SCREEN AND TYPE (CR)'
      CALL INITT(120)
      CALL GRID(2, 10, 2, 10, 1., 1)
      DO 13 K=1, IWEEK
      DO 102 J=2, M+1
100
      FORMAT(F10, 2, 2F10, 1)
      READ(3,100,END=102)DATE(J),SPD(J),DIR(J)
101
      SPD(U)=SPD(U)*1. OE-5
      ししまし
102
      CONTINUE
      DO 11 J=2, JJ
100
      DT=60/ITIMES*60
      X(J)=SIN(DIR(J)/57.3)*SPD(J)*DT+X(J-1)
      Y(J)=COS(DIR(J)/57.3)*SPD(J)*DT+Y(J-1)
201
      IF(J. EQ. 2) CALL PLOT(X, Y, 1, -2)
11
      CONTINUE
      CALL TINPUT(LA)
      CALL PLOT(X, Y, JJ, O)
      X(1)=X(JJ)
      Y(1)=Y(JJ)
13
      CONTINUE
      CALL TINPUT(LA)
14
      CALL ASCALE(1,2,0)
      IMIN=IMIN-5
      CALL ASCALE(3,2,0)
      NCHAR=5
      CALL LABEL (IADE, 1)
      IADE(1)=89
      NCHAR=5
      CALL LABEL (IADE, 3)
      CALL FINITT(0,70)
      WRITE(7, 1009) MON, DAY, IYR, MMON, DDAY, IIYR
1009
     FORMAT(16X, 'PROGRESSIVE VECTOR DIAGRAM', 1X, 12, '-', 12, '-', 12,
     *1X, 'TO', 1X, I2, '-', I2, '-', I2)
      WRITE(7,1010)(POSIT(NN), NN=1,13), LAT, ALAT, LONG, ALONG
      FDRMAT(16X, 13A2, IX, '(', I2, '-', F4, 1, 'N', IX, I3, '-', F4, 1, 'W)')
1010
      WRITE(7, 1011) IHITE, TAPE
      FORMAT(16X, 'METER', 1X, I3, 1X, 'FEET ABOVE BED. TAPE
1011
     # NUMBER (, 4A2) (, 1)
      READ(S, 999)UI
\Box \cap \Box
      FORMAT(13)
      STOP
```

END

```
24
      PROCRAM STEPS
3.
      PLOTTING ROUTINE: HISTOGRAMS (SPEED AND DIRECTION)
\circ
      INTEGER DAY, DDAY, TAPE(4)
      DIMENSION DIR(73), SPD(251), POSIT(14)
      DIMENSION X(145), Y(145), U(501), V(501)
      DIMENSION TADE(20), JADE(17), KADE(12)
      COMMON/ADEO/IXY
      COMMON/PLOT/XMIN, XMAX, YMIN, YMAX, MINX, MAXX,
     XAMU, MAXY, IMIN, IMAX, UMIN, UMAX
      COMMON/TEKLET/NCHAR, XSIZE, YSIZE, SLOPE
      DATA IADE/68,73,82,69,67,84,73,79,78,32,40,68,69,71
     *, 32, 84, 82, 85, 69, 41/
      DATA JADE/37, 32, 79, 70, 32, 79, 66, 83, 69, 82, 86, 65, 84,
     373,79,78,83/
      DATA KADE/83,80,69,69,68,32,40,67,77,47,83,41/
      TYPE 0004
      FORMAT(/ ENTER INPUT DEVICE AND FILENAME AFTER *. ',/,)
0004
      CALL ASSIGN(3, IFILE, -10)
      TYPE 0001
      FORMAT(' TYPE POSITION DESCRIPTION (UP TO 26 CHARACTERS)')
0001
      ACCEPT 1001, (POSIT(NN), NN=1, 14)
1001
      FORMAT(14A2)
      TYPE 0002
     FORMAT(' DO YOU WANT TO USE THE X/Y PLOTTER? (YES=1; NO=0)')
0002
      ACCEPT 1002, IXY
1002
      FORMAT (I1)
(:
0
      READ HEADER
C
      READ(3, 1002)
      READ(3, 1002)
2000 FORMAT(15X, 4A2)
      READ(3, 2000) TAPE
      READ(3,1002)
      READ(3, 2001) LAT, ALAT, LONG, ALONG
2001
      FORMAT(15X, I3, F5, 1, 2X, I3, F5, 1)
      READ(3, 1002)
      READ(3,2002) IHITE
2002
      FORMAT(15X, I4)
      READ(3, 1002)
      READ(3, 2003)MON, DAY, IYR
      FORMAT(15X, I2, 1X, I2, 1X, I2)
2002
      READ(G, 2003) MMON, DDAY, TIYR
      READ(3, 1002)
      O=TOT
      DO 200 K=1,72
      DIR (!()=0
200
      CONTINUE
      DO 201 L=1,250
      SPD(L)=0
      CONTINUE
EQ'
      DO 250 J=1,28800
1003
      FORMAT(1X, IG, 1X, 212, 2F10, 1)
      PEAD(B, 1003, EMD#251) ADATE, KHR, KHIN, BPOD, DIRR
      L=SPOD
      X=D (RR/5. 0
       IF(L.LT.0.OP.L.ST 950\SO TO 950
       IF(X, GT TE)GO TO 250
       1 = 1 - 1
```

```
K=K+1
      SPD(L) = SPD(L) + 1.
      TOT=TOT+1.
      DIR(K) = DIR(K) + 1.
250
      CONTINUE
251
      XMIN=0. 0
      XMAX=360.
      YMIN=0.0
      YMAX=40. 0
      WINX=550
      MAXX=800
      MINY=160
      MAXY=420
      PAUSE 'PAGE SCREEN AND TYPE (CR)'
      CALL INITT(120)
      CALL GRID(1, 12, 1, 8, 1, 0, 1)
      DO 253 KK=1,144,2
      K=KK/2+1
      X(KK)=5*(K-1)
      X(KK+1)=5*(K-1)+5
233
      CONTINUE
      DO 255 K=1, 144, 2
      KK=K/2+1
      Y(K)=(DIR(KK)/TGT)*100.
      Y(K+1)=Y(K)
255
      CONTINUE
      CALL TINPUT(LA)
      CALL PLOT(X, Y, 144, 0)
      CALL ASCALE(1,12,0)
      CALL ASCALE(3,8,0)
      NCHAR=20
      CALL LABEL (IADE, 1)
      NCHAR=17
      CALL LABEL (JADE, 3)
      CALL RROTAT(0.)
      MINY=480
      MAXY=740
      XMIN=0. 0
      XMAX=250.
      YMAX=10.0
      CALL TIMPUT(LA)
      CALL GRID(1, 10, 1, 5, 1, 0, 1)
      DC 254 LL=1,500,2
      L=LL/2+1
      U(LL)=L-1
      U(LL+1)=L
254
      CONTINUE
      DO 256 L=1,500,2
      LL=L/2+1
      V(L) = (SPD(LL)/TOT)*100.
      V(L+1)=V(L)
256
      CONTINUE
      CALL TIMPUT(LA)
      CALL FLOT(U, V. 500, 0)
      CALL TIMPUT(LA)
      CALL ASCALE(1.10,0)
      CALL ASCALE(G, 5, 0)
      MCHAR=12
      CALL LABEL (KACE, 1)
      MCHAR=17
```

```
CALL LABEL (JADE, 3)
      CALL TINPUT(LA)
      CALL FINITT(0,70)
      WRITE(7,5000)MON, DAY, IYR, MMON, DDAY, IIYR
5000 FORMAT(17X, 'STATISTICS: SPEED & DIRECTION', 1X, 12, '-',
     *I2, '-', I2, 1X, 'TO', 1X, I2, '-', I2, '-', I2)
      WRITE(7,5001)(POSIT(NN), NN=1,14), LAT, ALAT, LONG, ALONG
5001
      FORMAT(17X, 14A2, 2X, '(') I2, '-', F4. 1, 'N', 1X, I3, '-',
     *F4.1,'W)')
      WRITE(7,5002) IHITE, TAPE
5002 FORMAT(17X, 'METER', 1X, I3, 1X, 'FEET ABOVE BED. TAPE
     * NUMBER ', 4A2, '. ')
      READ(5,999)JI
999
      FORMAT(I5)
      STOP
      END
```